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1. Introduction 

 

        For  the function f Lip  the  degree of approximation  by Cesâro 

means and Nörlund means  of the Fourier series of  f  have been studied by 

Alexits1, Sahney and Goel2, Chandra3, Qureshi4,5, Qureshi and Neha6, 

Leindler7, Rhoads Lal and Nigam8.  But till now nothing seems to have been 

done in the direction of present work . In this paper we established a new 

theorem on the degree of  approximation of conjugate  function belonging to 

the weighted Lip   ,t p class of conjugate Fourier series by matrix  

summability  method. 

 

2. Preliminaries 

 

       Let  f x  be periodic with period 2  and integrable in the sense of 

Labesgue. The Fourier series associated with f  at a point x  is defined as  

(2.1)      0
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~ cos sin .
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Partial sum of Fourier series usually written as  
 

       0

1

, cos sin .
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S f x a kx b kx



    

 

The conjugate series of Fourier series is given by  

                    

(2.2)       
1 1

cos sin ( ) .n n n

n n

b nx a nx B x f x
 

 

     

 

With partial sum  ,nS f x . We will use (2.2) as conjugate series of Fourier 

series. 

Define, 
 

(2.3)      ,
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Where ,n ka  is a lower triangular matrix with non -negative entries such that 
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For all 0n  The series (2.1) is said to T -summable to s  If  ,nt f x s  as 

n . The T -operator reduces to the Nörlund pN - operator, if 

  

(2.4)   ,

, 0
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where 
0

0
n

n k

k

P p


   and 1 10 .p P   In this case. The transform  ,nt f x  

reduce to the Norlund transform  ,nN f x . if lim 0n k
n

a


  for  each ,k   then T  

is reguar .  

      The pL - norm is defined by 
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(2.5)            
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0, 2

sup
x

f f x





  

 

and the degree of approximation  nE f  is given by  

 

 (2.6)                       min ,n n p
n

E f f x T x   

 

Where  nT x  is a trigonometric polynomial of degree .n  A function 

f Lip , if  

 

 (2.8)                          f x t f x O t    for 0 1   

 

And  ,f Lip p , for 0 2x   , if  
 

 (2.9)                             
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Given a positive increasing function  t  and 1,p     ,f x Lip t p  if   

  

 (2.10)                             
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and     ,pf x W L t  if  
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 . 

 

If 0  , our newly defined class    ,pW L t   coincides with the class 

  ,Lip t p . We write  
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3. Main theorem 

 

       Lemma3  3.1: Let  ,n kT a  be an infinite triangular matrix satisfying 

(.Then 
  

(3.1)                       , (1), 0 .n kR O k n                                        

For 0,k  

(3.2)                       ,0 (1),nR O  

i.e.,  



              On the  Degree of Approximation of Conjugate Function Belonging….         145 

 
 

 

(3.3)                         ,01 (1).nn a O   

       Lemma9 (3.2): Let  ,n kT a be an infinite triangular matrix satisfying 

(2.4).Then  

(3.4)                          
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       Theorem 3.1: Let  ,n kT a  be an infinite triangular matrix with non – 

negative entries satisfying9, then the degree of approximatiom of function 

 f x , conjugate to a 2  periodic function  f x  belonging to class 

  , , 1pW L t p   by using a matrix operator on its conjugate Fourier seires , 

is given by  

(3.5)                             
1

.p

nf x t x O n t



 

   
 
 

                                              

 Provided that  t  satisfies (2.4) and ( 2.5) uniformly in  ,t  in which        

is an arbitrary positive number with  1 1 0,q     where 1 1 1,p q   1 p    

and condition (2.8) holds  

        Remark (3.1):  in the case of the pN   transform , condition9, for ,r n  

reduce to (2.1) (ii) and thus theorem (3.1) extends theorem (2.6) to matrix 

summability for the waighted class function . 

       Remarks (3.2): Also for 0,  theoem (3.1) reduce to Corollary (4.1) , 

and thus generalizes the theorem of Lal and Nigam2.  

       Proof: We know that  
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 using Hölder’s inequality , condition (2.4) and the fact 

that   1sin ,
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t
t
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   and the second mean value theorem for the 

integrals, 
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(3.7)                     
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Since  t  is non- decreasing with t  and also using condition (2.8), 
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(3.8)                       
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Using Hölder’s inequality, condition (2.5) , Lemma (3.2) , Minkowski ’s 

inequality , and condition (2.8). 
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Using Lemma (3.1)  
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From condition9 
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Combining (3.9), (3.10)  and  (3.11) 
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Hence 1I  and 2I  yields  
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Using pL   norm, we have    
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4. Particular cases 

 

       Corollary13 4.1: If   ,t t   0 1,   then the waighted class 

  , ,pW L t 1,p  reduce to the class  ,Lip p  and the degree of 

approximation of a function  ,f x  conjugate to 2   periodic function 

f belonging to the class  ,Lip p  is given by 
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       Proof: The result follows by setting 0  in (3.1) 

       Corollary12 4.2: If   ,t t   for ,p   in corollary (4.1) , then 

.f Lip  

       Proof: In his case , using (4.1), one has theorem (3.1). for ,p  we get  
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