On the Degree Of Approximation of Conjugate Function Belonging to Lip $(\xi(t), p)$ Class of Conjugate Series of Fourier Series by Matrix Summability Method

Gopal Krishna Singh

Department of Mathematics O. P. Jindal Institute of Technology, Raigarh, Chhattisgarh-496001 Emails: gopalkrishnaopju@gmail.com

(Received March 28, 2018)

Abstract: we prove a new theorem on the degree of approximation of conjugate function belonging to the weighted Lip $(\xi(t), p)$ class of conjugate series of Fourier series by matrix summability method. **Keywords:** Matrix summability, conjugate series of Fourier series, degree of approximation, Lip functions. **2010 AMS Classification Number:** 41A10, 42B05, 42B08.

1. Introduction

For the function $f \in Lip\alpha$ the degree of approximation by Cesâro means and Nörlund means of the Fourier series of f have been studied by Alexits¹, Sahney and Goel², Chandra³, Qureshi^{4,5}, Qureshi and Neha⁶, Leindler⁷, Rhoads Lal and Nigam⁸. But till now nothing seems to have been done in the direction of present work. In this paper we established a new theorem on the degree of approximation of conjugate function belonging to the weighted Lip $(\xi(t), p)$ class of conjugate Fourier series by matrix summability method.

2. Preliminaries

Let f(x) be periodic with period 2π and integrable in the sense of Labesgue. The Fourier series associated with f at a point x is defined as

(2.1)
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Partial sum of Fourier series usually written as

$$S_n(f,x) = \frac{a_0}{2} + \sum_{k=1}^k (a_k \cos kx + b_k \sin kx).$$

The conjugate series of Fourier series is given by

(2.2)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x) = \overline{f}(x).$$

With partial sum $\overline{S}_n(f, x)$. We will use (2.2) as conjugate series of Fourier series. Define,

(2.3)
$$t_n(f,x) = \sum_{k=0}^n a_{n,k} S_k(f,x),$$

Where $a_{n,k}$ is a lower triangular matrix with non -negative entries such that

$$a_{n,-1} = 0, A_{n,k} = \sum_{r=k}^{n} a_{n,k}, A_{n,0} = 1$$

For all $n \ge 0$ The series (2.1) is said to *T*-summable to *s* If $t_n(f,x) \rightarrow s$ as $n \rightarrow \infty$. The *T*-operator reduces to the Nörlund N_p -operator, if

(2.4)
$$a_{n,k} = \begin{cases} \frac{p_{n-k}}{p}, \ 0 \le k \le n \\ 0, \ k > n, \end{cases}$$

where $P_n = \sum_{k=0}^n p_k \neq 0$ and $p_{-1} = 0 = P_{-1}$. In this case. The transform $t_n(f, x)$ reduce to the Norlund transform $N_n(f, x)$. if $\lim_{n \to \infty} a_{nk} = 0$ for each k, then T is reguar.

The L_p - norm is defined by

(2.5)
$$||f||_{p} = \int_{0}^{2\pi} (|f(x)|^{p} dx)^{\frac{1}{p}}, p \ge 1, ||f||_{\infty} = \sup_{x \in [0, 2\pi]} |f(x)|$$

and the degree of approximation $E_n(f)$ is given by

(2.6)
$$E_n(f) = \min_n ||f(x) - T_n(x)||_p,$$

Where $T_n(x)$ is a trigonometric polynomial of degree *n*. A function $f \in Lip \alpha$, if

(2.8)
$$|f(x+t)-f(x)| = O(|t|^{\alpha}) \text{ for } 0 < \alpha < 1$$

And $f \in Lip(\alpha, p)$, for $0 \le x \le 2\pi$, if

(2.9)
$$W_{p}(t,f) = \left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} dx\right)^{\frac{1}{p}} = O(|t|^{\alpha}), \ 0 < \alpha \le 1, \ p \ge 1.$$

Given a positive increasing function $\xi(t)$ and $p \ge 1$, $f(x) \in Lip(\xi(t), p)$ if

(2.10)
$$W_{p}(t,f) = \left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} dx\right)^{\frac{1}{p}} = O(\xi(t))$$

and $f(x) \in W(L_p, \xi(t))$ if

$$W_p(t,f) = \left(\int_0^{2\pi} |f(x+t) - f(x)|^p \sin^\beta x dx\right)^{\frac{1}{p}} = O(\xi(t))$$

If $\beta = 0$, our newly defined class $W(L_p, \xi(t))$ coincides with the class $Lip(\xi(t), p)$. We write

$$\psi(t) = \frac{1}{2} \Big[f(x+t) - f(x-t) \Big],$$
$$W_n = \left| \frac{1}{P_n} \right|_{k=0}^n K |p_k - p_{k-1}|,$$

,

$$\begin{split} W_n(r) &= \sum_{k=0}^r (k+1) \left| \Delta_k a_{n,n-k} \right|, \ 0 \le r \le n, \\ M(n,t) &= \sum_{k=0}^n a_{n,n-k} \cos\left(n-k+\frac{1}{2}\right) t, \\ \overline{f}(x) &= \frac{1}{\pi} \int_0^{\pi} \psi(t) \cot\left(\frac{t}{2}\right) dt = \lim_{q \to 0} \int_q^{\pi} \psi(t) \cot\left(\frac{t}{2}\right) dt \\ A_{n,k} &= \sum_{k=0}^n a_{n,r} , \\ V_{n,k} &= \frac{(n-k+1)a_{n,k}}{A_{n,k}} , \\ \overline{K}(n,t) &= \frac{1}{\sin\left(\frac{t}{2}\right)} \sum_{k=0}^n a_{n,n-k} \cos\left(n-k+\frac{1}{2}\right) t, \\ \overline{K}(n,t) &= \frac{M(n,t)}{\sin\left(\frac{t}{2}\right)} . \\ \tau &= \left[\frac{1}{t}\right], \text{ integral part of } \frac{1}{t} \\ \Delta_k a_{n,n-k} &= a_{n,k} - a_{n,k+1}. \end{split}$$

3. Main theorem

Lemma³ **3.1:** Let $T = (a_{n,k})$ be an infinite triangular matrix satisfying (.*Then*

 $\begin{array}{ll} (3.1) & R_{n,k} = O(1), \ 0 \leq k \leq n. \\ For \ k = 0, \\ (3.2) & R_{n,0} = O(1), \\ i.e., \end{array}$

$$(3.3) \qquad (n+1)a_{n,0} = O(1)$$

Lemma⁹ (3.2): Let $T = (a_{n,k})$ be an infinite triangular matrix satisfying (2.4). Then

$$(3.4) \qquad |M(n,t)| = O(A_{n,n-\tau}) + O\left(\frac{1}{\tau}\right) \left(\sum_{k\tau}^{n-1} |\Delta_k a_{n,n-k}| + a_{n,0}\right).$$

Theorem 3.1: Let $T = (a_{n,k})$ be an infinite triangular matrix with non – negative entries satisfying⁹, then the degree of approximatiom of function $\overline{f}(x)$, conjugate to a 2π -periodic function f(x) belonging to class $W(L_p, \xi(t)), p \ge 1$ by using a matrix operator on its conjugate Fourier seires, is given by

(3.5)
$$\left\|\tilde{f}(x)-\tilde{t}_n(x)\right\| = O\left(n^{\frac{\phi+\frac{1}{p}}{p}}\xi(t)\right).$$

Provided that $\xi(t)$ satisfies (2.4) and (2.5) uniformly in $\xi(t)$, in which δ is an arbitrary positive number with $q(1-\delta)-1>0$, where $p^{-1}+q^{-1}=1$, $1\le p\le\infty$ and condition (2.8) holds

Remark (3.1): in the case of the N_p - transform, condition⁹, for r=n, reduce to (2.1) (ii) and thus theorem (3.1) extends theorem (2.6) to matrix summability for the waighted class function.

Remarks (3.2): Also for $\phi=0$, theorem (3.1) reduce to Corollary (4.1), and thus generalizes the theorem of Lal and Nigam².

Proof: We know that

$$\overline{S}_{n-k}(x) - \overline{f}(x) = -\frac{1}{2\pi} \int_{0}^{\pi} \psi(x) \left[\frac{\cos\left(n-k+\frac{1}{2}\right)t}{\sin\left(\frac{t}{2}\right)} \right] dt,$$

(3.6)
$$\sum_{k=0}^{n} a_{n,n-k} \left\{ \overline{f}(x) - \overline{S}_{n-k}(x) \right\} = \frac{1}{2\pi} \int_{0}^{\pi} \psi(x) \left[\sum_{k=0}^{n} a_{n,n-k} \frac{\cos\left(n-k+\frac{1}{2}\right)t}{\sin\left(\frac{t}{2}\right)} \right] dt,$$

Therefore

$$\overline{f}(x) - \overline{t_n}(x) = \frac{1}{2\pi} \int_0^{\pi} \psi(x) \left[\sum_{k=0}^n a_{n,n-k} \frac{\cos\left(n-k+\frac{1}{2}\right)t}{\sin\left(\frac{t}{2}\right)} \right] dt,$$

Hence

(3.7)

$$\left| \overline{f}(x) - \overline{t}_{n}(x) \right| \leq \frac{1}{2\pi} \int_{0}^{\pi} |\psi(x)| |\overline{K}(n,t)| dt$$
$$= \frac{1}{2\pi} \left[\int_{0}^{\frac{\pi}{n+1}} + \int_{\frac{\pi}{n+1}}^{\pi} \right] |\psi(x)| |\overline{K}(n,t)| dt = \frac{1}{2\pi} \left[I_{1} + I_{2} \right] |\psi(x)|, \text{ say}$$

Since $\overline{K}(n,t) = O\left(\frac{1}{t}\right)$, using Hölder's inequality, condition (2.4) and the fact that $(\sin t)^{-1} \le \frac{\pi}{2t}$, for $0 < t \le \frac{\pi}{2}$, and the second mean value theorem for the integrals,

$$\begin{split} I_{1} &= \int_{0}^{\frac{\pi}{n+1}} \left| \psi(x) \right| \left| \overline{K}(n,t) \right| dt \\ &= O\left[\int_{0}^{\frac{\pi}{n+1}} \left\{ \frac{t\psi(t)\sin^{\phi}t}{\zeta(t)} \right\}^{p} dt \right]^{\frac{1}{p}} \left[\int_{0}^{\frac{\pi}{n+1}} \left\{ \frac{t\psi(t)\overline{K}(n,t)}{t\sin^{\phi}t} \right\}^{q} dt \right]^{\frac{1}{q}} \\ &= O\left(\frac{1}{n+1} \int_{h}^{\frac{\pi}{n+1}} O\left\{ \frac{\xi(t)}{t^{2}\sin^{\phi}t} \right\}^{q} dt \right]^{\frac{1}{q}} \\ &= O\left(\frac{1}{n+1} \int_{h}^{\frac{\pi}{n+1}} O\left\{ \frac{\frac{\pi}{n+1}}{\sin\frac{\pi}{n+1}} \right\}^{\phi q} \int_{h}^{\frac{\pi}{n+1}} O\left\{ \frac{\xi(t)}{t^{2+\phi}} \right\} dt \\ \end{split}$$

$$=O\left(\frac{1}{n+1}\right)\left[\int_{h}^{\frac{\pi}{n+1}}O\left\{\frac{\xi(t)}{t^{2+\phi}}\right\}dt\right]^{\frac{1}{q}}$$

Since $\xi(t)$ is non-decreasing with t and also using condition (2.8),

(3.8)
$$I_{1} = O\left(\frac{1}{n+1}\right) O\left(\xi\left(\frac{\pi}{n+1}\right)\right) \left[\int_{h}^{\frac{\pi}{n+1}} t^{-(2+\phi)q} dt\right]^{\frac{1}{q}} = O\left((n+1)^{-1}\xi\left(\frac{1}{n+1}\right)\right) O\left(n^{2+\phi-\frac{1}{q}}\right) = O\left(n^{\phi+\frac{1}{p}}\xi\left(\frac{1}{n+1}\right)\right).$$

Using Hölder's inequality, condition (2.5), Lemma (3.2), Minkowski 's inequality, and condition (2.8).

$$\begin{split} I_{1} &= \int_{\frac{\pi}{n+1}}^{\pi} |\psi(x)| |\overline{K}(n,t)| dt \\ &\leq \left[\int_{\frac{\pi}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} \psi(t) \sin^{\phi} t}{\xi(t)} \right\}^{p} dt \right]^{\frac{1}{p}} \left[\int_{\frac{\pi}{n+1}}^{\pi} \left\{ \frac{\psi(t) \overline{K}(n,t)}{t^{-\delta} \sin^{\phi} t} \right\}^{q} dt \right]^{\frac{1}{q}} \\ &\leq \left[\int_{\frac{\pi}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} |\psi(t)| |\sin^{\phi} t|}{\xi(t)} \right\}^{p} dt \right]^{\frac{1}{p}} \left[\int_{\frac{\pi}{n+1}}^{\pi} \left\{ \frac{\psi(t) M(n,t)}{t^{-\delta} \sin^{\phi} t \sin \frac{t}{2}} \right\}^{q} dt \right]^{\frac{1}{q}} \\ &= O\left((n+1)^{\delta} \right) \left[\int_{\frac{\pi}{n+1}}^{\pi} \left\{ \frac{\xi(t)}{t^{-\delta+1+\phi}} \right\}^{q} O\left\{ A_{n,n-\tau} + t^{-1} \left(a_{n,0} + \sum_{k=\tau}^{n-1} |\Delta_{k} a_{n,n-k}| \right) \right\}^{q} dt \right]^{\frac{1}{q}} \\ &= O\left((n+1)^{\delta} \xi\left(\frac{\pi}{n+1} \right) \right) O\left[I_{2,1} + I_{2,2} + I_{2,3} \right], \text{ say} \end{split}$$

Since A has non– negative entries and row sums one

$$I_{2,1} = \left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} A_{n,n-\tau} \right)^{q} dt \right\}^{\frac{1}{q}}$$

$$(3.9) \qquad = \left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} \right)^{q} dt \right\}^{\frac{1}{q}}$$

$$= O\left(n^{\phi-\delta-\frac{1}{q}} \right).$$

Using Lemma (3.1)

(3.10)
$$I_{2,2} = \left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi-1} a_{n,0} \right)^{q} \right\}^{\frac{1}{q}}$$
$$= O\left(a_{n,0} \right) \left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} - 1 \right)^{q} dt \right\}^{\frac{1}{q}}$$
$$= O\left(\left(n+1 \right)^{-1} \right) \left(n^{\phi-\delta+1-\frac{1}{q}} \right) = O\left(n^{\phi-\delta+1-\frac{1}{q}} \right).$$

From condition⁹

$$I_{2.3} = \left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta - 1 - \phi} \sum_{k=\tau}^{n-1} |a_{n,n-k}| \right)^{q} dt \right\}^{\frac{1}{q}}$$
$$= O\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta - \phi} \left(\tau + 1\right) \sum_{k=\tau}^{n-1} |a_{n,n-k}| \right)^{q} dt \right\}^{\frac{1}{q}}$$

$$(3.11) = O\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} \sum_{k=\tau}^{n-1} (k+1) \left| a_{n,n-k} \right| \right)^{q} dt \right\}^{\frac{1}{q}}$$
$$= O\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} W_{n}(n+1) \right)^{q} dt \right\}^{\frac{1}{q}} = O\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(t^{\delta-\phi} A_{n,0} \right)^{q} dt \right\}^{\frac{1}{q}}$$
$$= O\left(n^{\phi-\delta-\frac{1}{q}} \right).$$

Combining (3.9), (3.10) and (3.11)

(3.12)
$$I_2 = O\left(n^{\delta+1}\xi\left(\frac{1}{n}\right)\right)\left(n^{\phi-\delta-\frac{1}{q}}\right) = O\left(n^{\phi+\frac{1}{p}}\xi\left(\frac{1}{n+1}\right)\right).$$

Hence I_1 and I_2 yields

(3.13)
$$\left|\overline{f}(x) - \overline{t}_n(x)\right| = O\left(n^{\phi + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right).$$

Using L_p – norm, we have

(3.14)
$$\|\overline{f}(x) - \overline{t}_{n}(x)\|_{p} = \left\{ \int_{0}^{2\pi} |\overline{f}(x) - \overline{t}_{n}(x)|^{p} dx \right\}^{\frac{1}{p}}$$
$$= O\left\{ \int_{0}^{2\pi} \left(n^{\phi + \frac{1}{p}} \xi\left(\frac{1}{n}\right) \right) dx \right\}^{\frac{1}{p}}$$
$$= O\left\{ n^{\phi + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right)^{2\pi} dx \right\}^{\frac{1}{p}} = O\left[n^{\phi + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right)^{2\pi} dx \right]^{\frac{1}{p}} = O\left[n^{\phi + \frac{1}{p}} dx \right]^{\frac{1}{p}} dx \right]^{\frac{1}{p}} = O\left[n^{\phi + \frac{1}{p}} dx \right]^{\frac{1}{p}} dx \right]^{\frac{1}{p}} dx \right]^{\frac{1}{p}} dx$$

4. Particular cases

Corollary¹³ **4.1:** If $\xi(t)=t^{\alpha}$, $0 < \alpha \le 1$, then the waighted class $W(L_p, \xi(t))$, $p \ge 1$, reduce to the class $Lip(\alpha, p)$ and the degree of approximation of a function $\overline{f}(x)$, conjugate to 2π - periodic function f belonging to the class $Lip(\alpha, p)$ is given by

(4.1)
$$\left|\overline{t}(x) - \overline{f}(x)\right| = O\left(\frac{1}{n^{\alpha - \frac{1}{\phi}}}\right).$$

Proof: The result follows by setting $\phi = 0$ in (3.1)

Corollary¹² **4.2:** If $\xi(t)=t^{\alpha}$, for $p=\infty$, in corollary (4.1), then $f \in Lip \alpha$.

Proof: In his case, using (4.1), one has theorem (3.1). for $p=\infty$, we get

$$\|\overline{f}(x) - \overline{t_n}(x)\|_p = \sup_{0 \le x \le 2\pi} |\overline{f}(x) - \overline{t_n}(x)|$$

$$= O\left(\frac{1}{n^{\alpha}}\right)$$

$$= O\left(\frac{1}{P_n}\sum_{k=1}^n \frac{P_k}{K^{\alpha+1}}\right), \text{ for } p_n \ge p_{n+1}.$$
i.e.,
$$|\overline{f}(x) - \overline{t_n}(x)| = O\left(\frac{1}{P_n}\sum_{k=1}^n \frac{P_k}{K^{\alpha+1}}\right).$$

Acknowledgements: Authers are thankful to his parents for encourage to this work.

References

- 1. E. Hille and D.Tamarkin, On the Summability of Fourier Series, *Transactions of the American Mathematical Society*, **34(4)** (1932), 757-783.
- 2. M. L. Mittal and B. E. Rhoads, On the Degree of Approximation of Continuous Functions by Using Linear Operators on their Fourier Series, *International Journal of Mathematics, Game theory and algebra*, **9**(**4**) (1999), 259–267.
- Mittal, A Sufficient Condition for (F₁) Effectiveness of C¹T Method, Journal of mathematical Ananlysis and Aplication, 220(2) (1998), 434-450.
- K. Qureshi, On the Dgree of Approximation of Function Belonging to the Lipschitz Class Lip α, By Means of a Conjugate Series, Indian Journal of Pure and Applied Mathematics, 12(9) (1981), 1120-1123.

- 5. K. Qureshi, On the Dgree of Approximation of Function Belonging to the Class $Lip(\alpha, p)$ by Means of a Conjugate Series, *Indian Journal of Pure and Applied Mathematics*, **13(5)** (1982), 560-563.
- 6. K. Qureshi, On the Dgree of Approximation of Function Belonging to Weighted $W(L_p, \xi(t))$ Class, Indian Journal of Pure and Applied Mathematics, 13(4) (1982), 471–475.
- M L Mittal and B. E. Rhoads, Approximation by Matrix Means of Double Fourier Series to Continuous Function in Two Variables, *Radovi Matematicki*, 9(1) (1999), 77– 99.
- 8. S. lal and H. K. Nigam, Degree of Approximation of Conjugate of a Function Belonging to $Lip(\xi(t), p)$ Class by Matrix Summability Means of Conjugate Fourier Series, *International Journal of Mathematics and mathematical science*, **27(9)** (2001), 555-563.
- 9. M. L. Mittal and B. E. Rhoads, Degree of Approximation to Functions a Normal Space, *Journal of computational Analysis and Application*, **2**(1) (2000), 1–10.
- 10. M. L. Mittal, B. E. Rhoads, V. N. Mishra and U. Singh, Using Infinite Matrices to Approximate Function of Class $Lip(\alpha, p)$ Using Trigonomtric Polynomials, *appear in Journal of Mathematical Analysis and Application*.
- 11. M. L. Mittal, U. Singh and V. N. Mishra, Approximation of Functions (Signals) Belonging to Weighted $W(L_p, \xi(t))$ - Class by Means of Conjugate Fourier Series Using Nörlund Operators, Varahmihir Journal of Mathematical Sciences, 5(2) (2005), 631-640.
- 12. M. L. Mittal, U. Singh, V. N. Mishra, S. Priti and S. S. Mittal, Approximation of Functions (Signals) Belonging to $Lip(\xi(t), p)$ Class By Means of Conjugate Fourier Series Using Linear Operators, *Indian Journal of Mathematics*, **47(2-3)** (2005), 217–229.
- 13. J. G. Proakis, Digital Communications, McGraw-Hill, New York, 1995.
- 14. E. Z. Psarakis and G.V. Moustakides, An L_2 Based Mathod for the Design of 1-Dzero Phase FIR Digital Filters, *IEEE Transaction on Circuits and System 1, Fundamental Theory of Applications*, **44(7)** (1997), 591–601.