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1. Introduction

For the function felLipa the degree of approximation by Cesaro
means and Norlund means of the Fourier series of f have been studied by

Alexits', Sahney and Goel?, Chandra®, Qureshi*®, Qureshi and Neha®,
Leindler’, Rhoads Lal and Nigam®. But till now nothing seems to have been
done in the direction of present work . In this paper we established a new
theorem on the degree of approximation of conjugate function belonging to

the weighted Lip (§(t), p)class of conjugate Fourier series by matrix
summability method.

2. Preliminaries

Let f(x) be periodic with period 2z and integrable in the sense of
Labesgue. The Fourier series associated with f ata point x is defined as

(2.1) f(x)~%+i(an cosnx+h, sin nx).
n=1
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Partial sum of Fourier series usually written as

S, (f ,x)=%+zk:(ak coskx-+b, sinkx).

k=1

The conjugate series of Fourier series is given by

0

(2.2) i(bn cosnx-a,sinnx)=>"B, (x)=f(x).

n=1 n=1

With partial sum S (f,x). We will use (2.2) as conjugate series of Fourier

series.
Define,

(2.3) tn(f,x)zzn:an'ksk(f,x),

k=0

Where a,, is a lower triangular matrix with non -negative entries such that

an,—1=01 Aw,k zzan,k ! An,O =1
r=k

For all n>0 The series (2.1) is said to T -summable to s If t,(f,x)—>s as
n—co. The T -operator reduces to the Norlund N - operator, if

p”’k,ogksn

(2.4) a, =
0, k >n,

where P,=>"p,#0 and p,=0=P,.In this case. The transform t(f,x)
k=0

reduce to the Norlund transform N (f,x).if lima, =0 for each k, then T
IS reguar .

The L, - norm is defined by
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1

2z 1
(2.5) ||f||p=J.(|f(x)|pdx)p p=1, |f]..= sup |f(x)|
0

xe[0, 27]

and the degree of approximation E,(f) is given by

(2.6) E,(f)=min||f (x)-T,(x)],.

Where T,(x) is a trigonometric polynomial of degree n. A function
f eLipa, if

(2.8) |f (x+t)—f(x)]=O({|) for 0<ar<1

And felLip(a, p), for 0<x<2r, if

(2.9) W ( (Hf (x+t)— x)|pdxj O(“), 0<ar<1, p=1.

Given a positive increasing function £(t) and p>1, f(x)eLip(&(t), p) if

(2.10) W, (t, f){ﬂ f(x+t)- f (x)|de] p =0(&(t))
and f(x)eW (L, &(t)) if

W, (t, f):Cﬂ f(x+t)- f (x)|psinﬂxde ' =0O(&(t)) -

If =0, our newly defined class W(L,,&(t)) coincides with the class
Lip(&(t), p). We write

v t)=%[f(x+t)— f(x-t)],

ZK|pk Py 1|

k=0

n
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W, (r)=Y (+)lAa,

k=0

, 0<r<n,

M(n, t)=zn:an’ ok cos(n—k+%jt,

k=0
4

f_(x)zl [ yx(t)cot(%jdt: lim ;Jiy/(t)cot(%jdt :

%

n
Ah,k zzan, r?
k=0

(n—k+1)a,
A

nk 1

— 1

K(n’t)zsin(tj
2

DA cos(n—k+1Jt,
k=0 2

TZH' integral part of %
Akan,n—k :an,k _an,k+l'
3. Main theorem

Lemma® 3.1: Let Tz(anyk) be an infinite triangular matrix satisfying
(.Then

(3.1) R, =0(), 0<k<n.
For k=0,
(3.2) R0 =0Q),

ie.,
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(3.3) (n+1)a, , =0().

Lemma® (3.2): Let T:(an‘k)be an infinite triangular matrix satisfying
(2.4).Then
)

1
(3.4) |M(n,t)|:O(Am,)+O(;)( A, .
Theorem 3.1: Let T=(a, ) be an infinite triangular matrix with non —

negative entries satisfying®, then the degree of approximatiom of function
f(x), conjugate to a 2z-—periodic function f(x) belonging to class

W(Lp, §(t)), p>1 by using a matrix operator on its conjugate Fourier seires ,
is given by

@9 Jfe0-£09)-of 0|

Provided that &£(t) satisfies (2.4) and ( 2.5) uniformly in &(t), in which &
is an arbitrary positive number with q(1-5)-1>0, where p™+q*=1, 1< p<oo
and condition (2.8) holds

Remark (3.1): in the case of the N - transform , condition®, for r=n,

reduce to (2.1) (ii) and thus theorem (3.1) extends theorem (2.6) to matrix
summability for the waighted class function .

Remarks (3.2): Also for ¢=0, theoem (3.1) reduce to Corollary (4.1) ,
and thus generalizes the theorem of Lal and Nigam?.

Proof: We know that

. . cos(n k+ j
(36) kzan,n—k{f(x)_s_n—k( } Z_J‘ Zannk 2 dt,

o)
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Therefore

. . cos| n—k+ |t
F(9-509- Jv() z(—"’j dt,

)

Hence

F(x)-5 (0} %I|y/(x)|||?(n,t)|dt

>
O'—.'_t“ﬁ

o] R =11, say

nil

1
27
Since K(n,t)zoe} using Holder’s inequality , condition (2.4) and the fact

that (sint)*ls%, for 0<ts%, and the second mean value theorem for the
integrals,

. sin‘t
1
1 i &t) " ’
3.7 =0 — o] dt
37 (n+1) ! {tzsin"’t}
1
p g9 q
— | na
_ ( 1 j n+1 _[O i(f) dt
n+1)| | gin 7 | ® t2*
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| ofto

Since &(t) is non- decreasing with t and also using condition (2.8),

T

o[ el e
. ofr 4o o4

Using Holder’s inequality, condition (2.5) , Lemma (3.2) , Minkowski ’s
inequality , and condition (2.8).

l,= T| (x)|K(n,t)dt

= (optsin’t)” || 5 (wORM |
< ) | [T o
g T t | (t)[sin 4] T vOM(Y |
= £(t) = t“*sin“’tSin%

1

q

=O((n+1)5) _T {%}qo {An’n_f +tl[anvo+knir|Akan’n_k

! )

n+l

=O[(n+1)§§(ni+1ﬁo[lzl+l2.2+I2.3], say

Since A has non— negative entries and row sums one
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1

(3.9) { T (t)’ dt}q

(3.10) O(an’o){ j (t7*-2)° dt}

From condition®
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(3.11) =04 | [tM’ ni(kJrl) a

n+l n+l

Combining (3.9), (3.10) and (3.11)

ol )

Hence I, and I, yields

(3.13) |f_(x)—t_n(x) |=O (nw;e{niﬂj}

Using L,— norm, we have

HORICIE { )50 pdx};
w0 ol
F 4]

4. Particular cases

Corollary® 4.1: If &(t)=t", O<a<l, then the waighted class
W(L,.&(t)). p=1 reduce to the class Lip(a, p) and the degree of

approximation of a function f(x), conjugate to 2z— periodic function
f belonging to the class Lip(«, p) is given by
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(4.1) [t(x)-F(x)|=0

Proof: The result follows by setting ¢=0 in (3.1)

Corollary** 4.2: If &(t)=t", for p=wo, in corollary (4.1) , then
felLipa.

Proof: In his case , using (4.1), one has theorem (3.1). for p=oo, we get

70T (0= sup [70x)-T,(x)

0<x<27m
1
n

—_O —_— 3 fO p p
! r n = Fn+
F% k 1}( axt v

ie., F()-5(9]- (kK}
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