On the Approximation of Conjugate Lip α Class Function by K^{λ} - Summability Means of its Fourier Series

Gopal Krishna Singh
Department of Mathematics
O. P. Jindal Institute of Technology, Raigarh, Chhattisgarh-496001
Emails: gopalkrishnaopju@gmail.com

(Received March 17, 2018)

Abstract

A new theorem on the degree of approximation of conjugate lip α class function by $K^{\lambda}-$ summability means of its Fourier series is proved Keywords: Fourier series, degree of approximation, Lip functions Matrix summability 2010 AMS Classification Number: 41A10, 42B05, 42B08.

1. Introduction

Recently, the degree of approximation of function belonging to K^{λ}-summability of Fourier series using different summability method has been researched by various investigators ${ }^{1-15}$ and references therein. Moreover we obtined the similar results for a class of more extensive function, we need to introduce some notations and definition. It is well known that the partial sums of the Foureir series usually be written as

$$
S_{n}(f, x)=\frac{a_{0}}{2}+\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), n \in N .
$$

Where $f \in L^{p}=L^{p}[0,2 \pi]$ is a 2π - periodic function and $p \geq 1$.
A function $f \in \operatorname{Lip} \alpha$, if

$$
f(x+t)-f(x)=o\left(|t|^{\alpha}\right) \text { for } 0<\alpha \leq 1 \text {. }
$$

The degree of approximation $E_{n}(f)$ of a function $f \in L^{p}$ space by triginometric polynomial $T_{n}(x)$ of degree n is given by

$$
E_{n}(f)=\min _{T_{n}}\left\|f(x)-T_{n}(x)\right\|_{p} .
$$

Let us define, for $n=0,1,2,3 \ldots \ldots$....the number $\left[\begin{array}{l}n \\ m\end{array}\right], 0 \leq m \leq n$ by

$$
x(x+1)(x+2)(x+3) \ldots \ldots .(x+n-1)=\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] x^{m},
$$

i.e.,

$$
\frac{\Gamma(x+n)}{\Gamma x}=\prod_{\gamma=0}^{n-1}(x+\gamma)=\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] x^{m} .
$$

The number $\left[\begin{array}{l}n \\ m\end{array}\right] x^{m}$ are known as absolute value of stirling number of first kind. Let $\left\{S_{n}\right\}$ be the sequence of partial sums of an infinite series $\sum a_{n}$ and let us write,

$$
S_{n}^{\lambda}=\frac{\Gamma \lambda}{\Gamma(\lambda+n)} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m} S_{m} .
$$

To denote nth K^{λ}-means of order $\lambda>0$. If $S_{n}^{\lambda} \rightarrow S$ as $n \rightarrow \infty$, where S is a fixed finite quantity, theb the sequence $\left\{S_{n}\right\}$ of the series $\sum a_{n}$ is said to be summable by Karamata method K^{λ} of order $\lambda>0$ to sum S and we can write

$$
S_{n}^{\lambda}=S\left(K^{\imath}\right) \text { as } n \rightarrow \infty .
$$

We still need a few notations

$$
\phi(t)=f(x+t)+f(x-t)-2 f(x)
$$

$$
K_{n}(t)=\frac{\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m} \sin \left(m+\frac{1}{2}\right) t}{\Gamma(\lambda+n) \sin \frac{t}{2}}
$$

2. On the Approximation of Conjugate Lip ${ }^{\alpha}$ Class Function by K^{λ} - Summability

Lemma 2.1: (Vuckovic 1965) Let $\lambda>0$ and $0<t<\frac{\pi}{2}$ then imaginary part of $\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma(\lambda \cos t+n) \sin \frac{t}{2}}=\frac{|\sin \{\lambda \log (n+1) \sin t\}|}{\sin \frac{t}{2}}+o(1)$ as $n \rightarrow \infty$, uniformly in t.

Theorem 2.1: If $f: R \rightarrow R$ is 2π - periodic function and Lipschitz class function then the degree of approximation of function f by the $K^{\lambda}-$ summability of Fourier series satisfies $\left\|S_{n}^{\lambda}-f\right\|_{\infty}=o\left(\frac{\log (n+1) e}{(n+1)^{\alpha+1}}+\frac{1}{(n+1)^{\lambda}}\right)$ for $n=0,1,2,3, \ldots$.

Proof: Titchmarsh (1939. p - 403) the $\mathrm{n}^{\text {th }}$ partial sum of Fourier series at $t=x$ is

$$
S_{m}-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{t}{2}} \phi(t) d t
$$

Then

$$
\begin{gathered}
\frac{\Gamma \lambda}{\Gamma(\lambda+n)} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m}\left\{S_{m}-f(x)\right\}=\frac{1}{2 \pi} \frac{\Gamma \lambda}{\Gamma(\lambda+n)} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m} \int_{0}^{\pi} \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{t}{2}} \phi(t) d t . \\
S_{n}^{\lambda}-\frac{\Gamma \lambda}{\Gamma(\lambda+n)} \frac{\Gamma(\lambda+n)}{\Gamma \lambda} f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} K_{n}(t) \phi(t) d t
\end{gathered}
$$

$$
\begin{align*}
S_{n}^{\lambda}-f(x) & =\frac{\Gamma \lambda}{2 \pi} \int_{0}^{\pi} K_{n}(t) \phi(t) d t=o\left[\int_{0}^{\pi} K_{n}(t) \phi(t) d t\right] \\
& =o\left[\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right]\left|K_{n}(t)\right||\phi(t)| d t \tag{2.1}\\
& =o\left[I_{1}\right]+o\left[I_{2}\right] .
\end{align*}
$$

To evaluate I_{1}

$$
\begin{aligned}
& K_{n}(t)=\frac{\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m} e^{i\left(m+\frac{1}{2}\right) t}}{\Gamma(\lambda+n) \sin \frac{t}{2}}, \\
K_{n}(t)= & =\operatorname{Im} \text { aginary parto } \frac{\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \lambda^{m} e^{i\left(m+\frac{1}{2}\right) t}}{\Gamma(\lambda+n) \sin \frac{t}{2}}, \\
& =I_{p} \frac{\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda^{m} e^{i m n t} e^{i \frac{1}{2} t}}{\Gamma(\lambda+n) \sin \frac{t}{2}}=I_{p} \frac{\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \lambda e^{i t} e^{\frac{i t}{2}}}{\Gamma(\lambda+n) \sin \frac{t}{2}}=I_{p} \frac{\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)} e^{\frac{i t}{2}}\right\}}{\Gamma(\lambda+n) \sin \frac{t}{2}} \\
= & I_{p}\left\{\cos \frac{t}{2}+\sin \frac{t}{2}\right\} \frac{\left.\Gamma \frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}}{\Gamma(\lambda+n) \sin \frac{t}{2}} \\
& \cos \frac{t}{2} I_{p}\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}+\sin \frac{t}{2} \operatorname{real} \operatorname{part} \text { of }\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\} \\
= & \frac{\Gamma(\lambda+n) \sin \frac{t}{2}}{}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\cos \frac{t}{2} I_{p}\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}}{\Gamma(\lambda+n) \sin \frac{t}{2}}+\sin \frac{t}{2} \text { real part of } \frac{\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}}{\Gamma(\lambda+n) \sin \frac{t}{2}} \\
& =o\left[\frac{I_{p}\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}}{\Gamma(\lambda+n) \sin \frac{t}{2}}\right]+o\left[\frac{\text { real part of }\left\{\frac{\Gamma\left(\lambda e^{i t}+n\right)}{\Gamma\left(\lambda e^{i t}\right)}\right\}}{\left.\Gamma(\lambda+n) \sin \frac{t}{2}\right]}\right] \\
& K_{n}(t)=o\left[\frac{\left\{\frac{\Gamma(\lambda \cos t+n) I_{p} \Gamma\left(\lambda e^{i t}+n\right)}{\Gamma(\lambda+n)}\right\}}{\Gamma(\lambda \cos t+n) \sin \frac{t}{2}}\right]+o\left[\frac{\Gamma(\lambda \cos t+n)}{\Gamma(\lambda+n)}\right] .
\end{aligned}
$$

For $\quad 0<t<\frac{1}{n+1}$

$$
\frac{\Gamma(\lambda \cos t+n)}{\Gamma(\lambda+n)}=o\left[n^{-\lambda(1-\cos t)}\right]=o\left[e^{-\frac{\lambda}{2} t^{2} \log n}\right]
$$

Since for $0<t<\frac{1}{n+1}, 0<1-\cos t<\frac{t^{2}}{2}$

$$
K_{n}(t)=O\left[\frac{e^{-\frac{\lambda}{2} t^{2} \log n} I_{p} \Gamma\left(\lambda e^{i t}+n\right)}{\Gamma(\lambda \cos t+n) \sin \frac{t}{2}}\right]+o\left[e^{-\frac{\lambda}{2} t^{2} \log n}\right] \text { for } 0<t<\frac{1}{n+1}
$$

and

$$
K_{n}(t)=o\left\{\frac{1}{(n+1)^{\lambda} t}\right\} \text { for } \frac{1}{n+1}<t<\pi
$$

$$
\left.\left.\begin{array}{rl}
I_{1} & =\int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|K_{n}(t)\right| d t \\
& =O\left\{\int_{0}^{\frac{1}{n+1}} \frac{e^{-\frac{\lambda}{2} t^{2} \log n}}{I_{p} \Gamma\left(\lambda e^{i t}+n\right)}\right. \\
\Gamma(\lambda \cos t+n) \sin \frac{t}{2}
\end{array} \phi(t) \right\rvert\, d t\right\}+o\left[\int_{0}^{\frac{1}{n+1}} e^{-\frac{\lambda}{2} t^{2} \log n}|\phi(t)| d t\right] .
$$

Applying lemma, we have

$$
\begin{aligned}
I_{1}= & =\left[\int_{0}^{\frac{1}{n+1}}\left[\left[e^{-\frac{\lambda}{2} t^{2} \log n}\left[\frac{|\{\sin [\lambda \log (n+1) \sin t]\}|}{\sin \frac{t}{2}}\right]+I(1)\right]|\phi(t)| d t\right]+o\left[\int_{0}^{\frac{1}{n+1}} e^{-\frac{\lambda}{2} t^{2} \log n}|\phi(t)| d t\right]\right. \\
& =o\left[\int_{0}^{\frac{1}{n+1}}\left[\frac{e^{-\frac{t^{2}}{2} \log n}}{\sin \frac{t}{2}}\{\sin [\lambda \log (n+1) \sin t]\}\right]|\phi(t)| d t\right]+o\left[\int_{0}^{\frac{1}{n+1}} e^{-\frac{\lambda}{2} t^{2} \log n}|\phi(t)| d t\right] \\
& \left.\left.=o\left[\int_{0}^{\frac{1}{n+1}}\left[\frac{e^{-\frac{\lambda}{2} t^{2} \log n}}{\sin \frac{t}{2}}\{\sin [\lambda \log (n+1) \sin t]\}\right]|\phi(t)| d t\right]+o(1)\right] \int_{0}^{\frac{1}{n+1}}|\phi(t)| d t\right] . \\
& I_{1}=o\left[\lambda(n+1) \int_{0}^{\frac{1}{n+1}}|\phi(t)| d t\right]+o(1)\left[\int_{0}^{\frac{1}{n+1}}|\phi(t)| d t\right] .
\end{aligned}
$$

Since $f(x+t)-f(x)=o\left(|t|^{\alpha}\right)$ i.e. $f \in \operatorname{Lip} \alpha$. We have

$$
\begin{aligned}
\phi(t) & =f(x+t)+f(x-t)-2 f(x) \\
& =|f(x+t)-f(x)|+|f(x-t)-f(x)| \\
& =o\left(|t|^{\alpha}\right)+o\left(|t|^{\alpha}\right) \\
& =o\left(|t|^{\alpha}\right)
\end{aligned}
$$

thus $\phi \in \operatorname{Lip} \alpha$.
Hence

$$
\begin{aligned}
I_{1} & =o\left[\lambda \log (n+1) \int_{0}^{\frac{1}{n+1}} o\left(\left|t^{\alpha}\right|\right) d t\right]+o(1)\left[\int_{0}^{\frac{1}{n+1}} o\left(t^{\alpha} \mid\right) d t\right], \\
I_{1} & =o[\lambda \log (n+1)] \int_{0}^{\frac{1}{n+1}}\left|t^{\alpha}\right| d t+o(1)\left[\left.\int_{0}^{\frac{1}{n+1}} t^{\alpha} \right\rvert\, d t\right] \\
& =o[\lambda \log (n+1)]\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}}+o(1)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}} \\
& =\left[\frac{\lambda \log (n+1)}{(\alpha+1)(n+1)^{\alpha+1}}\right]+o(1)\left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}}\right] \\
& =o\left[\frac{\lambda \log (n+1)+1}{(n+1)^{\alpha+1}}\right]=\left[\frac{\log (n+1) e}{(n+1)^{\alpha+1}}\right]
\end{aligned}
$$

Now I_{2}, for $\frac{1}{n+1}<t<\pi, \phi(t)$ is bounded.

$$
\begin{aligned}
I_{2} & =\int_{\frac{1}{n+1}}^{\pi}|\phi(t)|\left|K_{n}(t)\right| d t \\
& =o\left[\int_{\frac{1}{n+1}}^{\pi} \frac{1}{(n+1)^{\lambda}}|\phi(t)| d t\right] \\
& =o\left(\frac{1}{(n+1)^{\lambda}}\right) \int_{\frac{1}{n+1}}^{\pi} \frac{\phi(t)}{t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =o\left(\frac{1}{(n+1)^{\lambda}}\right) \int_{\frac{1}{n+1}}^{\pi} \frac{t^{\alpha}}{t} d t \\
& =o\left(\frac{1}{(n+1)^{\lambda}}\right)\left[\frac{t^{\alpha}}{\alpha}\right]_{\frac{1}{n+1}}^{\pi} \\
& =o\left(\frac{1}{(n+1)^{\lambda}}\right)\left[\frac{\pi^{\alpha}}{\alpha}-\frac{1}{\alpha(n+1)^{\alpha}}\right] \\
& I_{2}=o\left(\frac{1}{(n+1)^{\lambda}}\right) \\
& o\left(I_{1}\right)+o\left(I_{2}\right)=o\left[\frac{\log (n+1) e}{(n+1)^{\alpha+1}}\right]+o\left[\frac{1}{(n+1)^{\lambda}}\right]
\end{aligned}
$$

Thus

$$
\left|S^{\lambda}-f(x)\right|=o\left(\frac{\log (n+1) e}{(n+1)^{\alpha+1}}+\frac{1}{(n+1)^{\lambda}}\right)
$$

Hence

$$
\left\|S_{n}^{\lambda}-f\right\|_{\infty}=o\left(\frac{\log (n+1) e}{(n+1)^{\alpha+1}}+\frac{1}{(n+1)^{\lambda}}\right) .
$$

This proof the theorem.
Acknowledgements: Authers are thankful to his parents for encourage to this work.

References

1. R. P. Agnew, The Lotosky Method of Evaluation of Series, Michigan, Math. journal, 4 (1997), 105.
2. G. Alexits, Convergence Problems of Orthogonal Series, Pergamonpress, London, 1961
3. Prem Chandra, On Degree of Approximation of Function Belonging to the Lipschitz Class , Nanta Math, 8, 88.
4. P. D. Kathal, A New Criteria for Karamata Summability of Fourier Series, Riv. Math, 10(2) (1969), 33.
5. J. Karamata, Theorem Sur La Sommabilite Exponnentielle Etd' Autres Somabilitees S'y Rattachant, Mathematica (chij), 9 (1935), 164.
6. Shyam Lal and Ajay Pratap, On K^{λ} - Summability of Fourier Series, Ganita Sandesh, 13 (1999), 3-13.
7. Shyam Lal, On K^{λ} - Summability of Fourier Series, Bull. Cal. Math. Soc., 88 (1996), 385.
8. A. V. Lotosky, On a Linear Transformation of Sequence (Russian), Ivanov, Gos, Red, Imt. Uchen, Zap, 4 (1963), 61.
9. A. K. Ojha, Ph. D. Thesis, B.H.U., (1982), 120-128.
10. K. Qureshi, On Degree of Approximation of a Periodic Function f By Almost Nö Rlund Means, Tamkang J. Math, 12(1) (1981), 35.
11. K. Qureshi and H. K. Neha, A Class of Function and Their Degree of Approximation, Ganita, 41(1) (1990), 37.
12. B. N. Sahney and D. S. Goel, On Degree of Approximation of Continuous Function, Ranchi Univ. Math. J., 4 (1973), 50
13. L. M. Tripathi and Shyam Lal, $K^{\lambda}-$ Summability of Fourier Series, Journal Soe. Res., 34(2) (1984), 69.
