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Abstract: A study of deformation, with quasi-static assumption, of a 

medium, which consists of thermoelastic solid and poroelastic solid 

half-spaces, due to seismic sources and heat source in thermoelastic 

solid is carried out.  The formulated quasi-static problem is solved 

using Airy’s stress function approach. The expressions of Airy’s stress 

function and temperature difference function in an unbounded 

thermoelastic medium due to various types of seismic sources and heat 

source are obtained. For line forces, dip-slip dislocation and line heat 

source in the thermoelastic solid medium, the solutions in the form of 

displacements, stresses, pore pressure and temperature difference 

function are obtained. For a vertical dip-slip dislocation, analytical 

solutions are derived for particular cases of adiabatic and isothermal 

conditions in the thermoelastic medium and undrained and drained 

conditions in the poroelastic medium.  The results, so obtained, have 

been verified by making comparison with earlier results. Numerical 

results for displacements, pore pressure, temperature difference 

function and stresses have also been computed for vertical dip-slip 

fault. Temperature profile and stresses contours have also been plotted 

for line heat source.  
 

Keywords: seismic sources, thermoelastic, poroelastic, dip-slip 

dislocation, heat source. 

2010 AMS Classification Number: 74F05, 74F10, 74L05, 35Q74, 

35E20, 35B30. 

 



 

86                                             Anil K. Vashishth and  Kavita Rani 

 
 
 
 

 

 

 

 

 

 

1. Introduction 
 

The study of static response produced by seismic and/or heat source in a 

medium is significant in the fields like geomechanics, soil mechanics, 

hydrology, earthquake and structural engineering etc. To investigate the 

effect of a structural discontinuity on the deformation of a medium, it is 

appropriate to formulate a problem of a long fault in a model composed of 

two homogeneous half-spaces in welded contact and to find the analytical 

solution thereof. To explore the deformation caused by seismic sources, the 

two welded half-space models have been studied by many investigators
1-16

. 

The theory of poroelasticity deals with the mechanics of an elastic 

porous medium filled (thoroughly or partially) with pore fluid. It studies the 

coupling of the deformation of the rock/soil and flow of fluid in it. The 

Crust of the Earth can be treated as porous up to some extent. The 

interaction of solid skeleton and pore-fluid in saturated rocks/soil has drawn 

the attention of researchers. The linearized constitutive relations and 

governing equations for poroelastic medium were developed by Biot
17-18

 

and have been used by many investigators (Wang
19

 and the references 

therein). The elastic constants, introduced by Biot, were replaced by Rice 

and Cleary
20

 with Poisson ratio and bulk modulus evaluated in both the 

drained (constant pore pressure) and undrained (no flow) limits of long and 

short time behaviour, respectively. This formulation has also been adopted 

for many geophysical problems
21

. Rudnicki
22

 derived fundamental solutions 

for point and line sources in an isotropic poroelastic medium. Pan
23

 

presented fundamental solutions of fluid and solid point dislocations in an 

infinite poroelastic medium. Taguchi and Kurashige
24

 obtained fundamental 

solutions for point force and an instantaneous fluid point source in 

transversely isotropic poroelastic medium. Rani and Singh
25

 investigated the 

quasi-static response of a poroelastic medium subjected to seismic sources 

in the connected elastic medium. Kumar et al.
26

 considered a long tensile 

fault in an elastic half-space and computed the deformation caused by it in a 

poroelastic half-space. Kumar et al.
27

 formulated a problem of a single force 

of acting in a poroelastic medium and obtained the closed-form analytical 

solutions. Kumari and Miglani
28-29

 studied the plane strain problem of 

deformation induced by inclined line loads in isotropic and transversely 

isotropic elastic half-spaces in welded contact with a poroelastic half-space. 

Miglani and Kumari
30

 discussed plain strain deformation, caused by inclined 
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line loads, in two welded poroelastic half-spaces. Verma et al.
31

 formulated 

a model of poroelastic layer lying over an elastic half‐space and studied the 

deformation produced by a dip‐slip fault in the elastic medium. Pan et al.
32

 

obtained two dimensional general solutions and fundamental solution for 

fluid-saturated, orthotropic, poroelastic materials. 

A part of the interior of the Earth can be considered as thermoelastic due 

to strong dependence of properties on the temperature in the Mantle and the 

Core. Many deep seismic faults do occur in the lower Crust or upper Mantle 

layer of the Earth. So, for a realistic model, it is apt to represent the medium 

as a two-phase continuum, consisting of a poroelastic solid and a 

thermoelastic solid. A lot of literatures can be found on the problems of 

deformation due to seismic sources in elastic solids while that on poroelastic 

and thermoelastic solids is not so. Consideration of the fact, that some of the 

faults are very long, makes the two-dimensional fault model as adequate for 

many situations. 

In this paper, quasi static plane problem of deformation of a medium, 

which consists of thermoelastic and poroelastic solids, is undertaken. This 

deformation and change in temperature is considered due to seismic and 

thermal sources. The expressions of temperature difference function and 

Airy stress function in a thermoelastic solid due to various types of sources, 

derived by Vashishth and Rani
33

, are used. The general solutions for pore 

pressure, temperature difference function, stresses and displacements in both 

half-spaces have been derived. The case of vertical dip-slip fault is studied 

in detail and closed form solutions are obtained for two limits of long and 

short time: adiabatic and isothermal conditions in thermoelastic medium; 

undrained and drained conditions in poroelastic medium. The solutions in 

space-time domain are computed numerically. The results, obtained by 

Singh et al.
3
, Rani and Singh

25
 and Vashishth and Rani

33
, are obtained as 

particular cases. It is observed that there is a significant temperature change 

due to seismic source in thermoelastic medium. The displacements in 

poroelastic medium are also influenced when the other half space is taken 

thermoelastic instead of elastic one. 

 

2. Formulation of the Problem 

 

A model consisting of a homogeneous isotropic poroelastic half-space

( 0)z   in welded contact with a homogeneous isotropic thermoelastic half-

space ( 0)z  , is considered. The interface 0z   is adiabatic and 

impermeable.  A line source (seismic or heat source), acting through the 
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point (0,0, )h and parallel to the x -axis, in the thermoelastic half space is 

considered (Fig. 1).  

 
Figure 1. A line source acting through the point (0,0, )h

 
in thermoelastic half-space in 

welded contact to a poroelastic half-space 

 

The displacement components, for a plane strain problem in yz -plane, 

are taken as 
 

(2.1)              ( , , ), ( , , ), 0, ( , )i i i i x xu u y z t u u y z t u u i y z      
 

 

where iu and iu are displacement components in thermoelastic and 

poroelastic half-spaces respectively. 

A thermoelastic medium is characterized by the parameters:  , 

(Lame’s constants), t
 

( coefficient of linear thermal expansion),   

(Poisson’s ratio),  0 ( thermal conductivity), eC ( specific heat),  ( 

density) and 0T
 
(reference temperature). 

Following Vashishth and Rani
33

, the Airy’s Stress function 0U  and 

temperature difference function 0  (in Laplace transform domain), for a line 

source acting through the point (0,0, )h  and parallel to the x -axis in an 

unbounded thermoelastic medium, can be represented as  

 

(2.2)   
0 0

0

sin
,

cos

ky
U dk

ky



 

  
 

   

  

 

 

                        

                            Poroelastic                                              x  

                                                                                                               

                                                                                                            y  

                            Thermoelastic                             

                                                                     (0,0, )h          

                                                                     

                                                                  

                                                                  z  
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(2.3)   0 0

0

sin
,

cos

ky
dk

ky
 


 

  
 

   

where  
 

(2.4)   0 0 0 0( ) ,
m z h k z h

A e B k z h C e
           

 

(2.5)   
2

0 0 0 ,
m z h k z hs

A e k C e
c

  


          

                                                                                                                         

           

1
2

2 s
m k

c

 
  
 

,
2( )

(1 )

s 








,

 

 
0 2

2e s

c
C

  

  





,

0

2( )s 





 ,  

 

      0 (1 2 )    , (3 2 ) t     , 

2

0
s

e

T

C


 


  ,  

 2

s
s

s




 



,  s   

 

is the Laplace transform variable and 0A
, 0B

and 0C 
are source coefficients. 

Their values, for various types of sources, are given in Table 1. The bar over 

symbols represents Laplace transform with respect to t. 

 
Table 1 Source coefficients for various sources in thermoelastic medium. The upper and 

lower signs are for z h  and z h respectively. 

 
Source 

0A

 0B
 0C 

 Upper 

or 

lower 

solution 

Horizont

al line 

force 

1

22 (1 )

ycc kF

s m   

2

1
1

2

2
1 2

4 (1 )

y

cc k
F c

s

s k



 

 
    

 



 

1

2

(1 )

4 (1 )

yc F

sk 




 

Upper 

Vertical 

line force 
1

22 (1 )

zcc F

s 



 1

2

1

2 (1 )

zF cc

s k s 

 
  

 
 

1

2

(1 )

4 (1 )

zc F

sk 






 

Lower 

Line heat 

source 
  2

0

(1 2 )

2 1

cq

m s

 

  

 


 

  2

0

(1 2 )

2 1

cq

k s

 

  




 

0 Lower 
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Double 

couple   

( )

( )

yz

zy
 

yz zy

yz

F F

D

 
   

 

 
1

21

yzc ckD

s 



 

 
1

21

yzc ckD

s 
 

 

 
11

2 1

yzc D

sk 





 

Upper 

Double 

couple

( )

( )

zz

yy
 

(

)

yy zz

yz

F F

D




 

 
 

2 2

1

22 1

yzc c m k D

ms 





 

 
1

21

yzc ckD

s 





 

 

 
11

2 1

yzc D

sk 





 

Lower 

 

,y zF F  are magnitude of line forces, 'q is the heat generated per unit length 

and 
 

 
1

1

s

s

c
 







 

 

3. Governing Equations and General Solutions 

 

3.1 Solutions for poroelastic medium: The parameters that characterize an 

isotropic poroelastic medium are: Biot-Willis coefficient  , shear modulus 

  , drained Poisson’s ratio  , hydraulic diffusivity c , Skempton’s 

coefficient B , undrained Poisson’s ratio u and Darcy’s permeability  . 

The Biot’s stress function F  is defined as  
 

(3.1)                 

2 2 2

2 2
, ,yy zz yz

F F F

z y y z
  

  
     

     
                                                                                                                         

and the governing equations of poroelastic medium
25

 take the form  
 

(3.2)                  4 22 0,F p     
 

(3.3)                 2 2 3
0,

(1 )u

p
F

c t B 

  
      

   
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where 
2 2

2

2 2y z

 
  

 
, 

 1 2

2(1 )

 





 


, ij   are the stress components and 

p  is the pore pressure. 

Applying Laplace transform on Eqs. (3.2)-(3.3) and solving then, we get 
 

(3.4)                      
1

0

sin
,

cos

ky
F dk

ky



 

  
 


 

 

(3.5)                      
1

0

sin
,

cos

ky
p dk

ky



 

  
 


 

 

where  
 

(3.6)                       1 1 1 1( ) ,m z kzAe B kzC e 
  

 
 

(3.7)                      
2

1 1 1( ),m z kzs
A e k C e

c
 



 
   

 
1

2
2 s

m k
c

 
   

 
, 

2
(1 )

3
u B    , 

2( )

(1 )

u 




 
 


and 

1A ,

 
1B  and 

1C are 

arbitrary constants. 

 The corresponding stresses are obtained as 

 

(3.8)

                     
1

0

sin
,

cos
yy

ky
G dk

ky



 

   
 

    

                   

(3.9)                     1

0

sin
,

cos
zz

ky
N dk

ky



 

   
 


 

  

(3.10)                   1

0

cos
,

sin
yz

ky
S dk

ky


  
   

 


 
                                                                                                                                               

where 
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(3.11)                    2 2

1 1 1 1( (2 ) ) ,m z kzG m Ae k B kz C e
      

 

(3.12)                     2

1 1 1 1( ) ,m z kzN k Ae B kzC e


   
 

  

(3.13)                      1 1 1 1(1 ) ,m z kzS k m Ae k B kz C e
   

 
  
The corresponding displacement components are 

 

(3.14)                   
1

0

cos
2 ,

sin
y

ky
u V dk

ky


  
    

 
   

 

(3.15)                   1

0

sin
2 ,

cos
z

ky
u W dk

ky



 

    
 

   

where 

(3.16)                           1 1 1 1{ ( 2 2 ) } ,m z kz

uV k Ae B kz C e
       

 

(3.17)                       1 1 1 1( ( 1 2 ) ) ,m z kz

uW m Ae k B kz C e        

 

The flux of fluid in z -direction is given by 
 

(3.18)                         1

0

sin
,

cos
z

ky
q F dk

ky


 

   
 

                                                                                                                                                     

where 

(3.19)                         
3

1 1 1 .m z kzs
F m A e k C e

c




 
      

  

                                                                                                                            

3.2 Solutions for thermoelastic medium: For the thermoelastic medium, 

the Airy’s stress function U  is defined
33

 as 
 

(3.20)                  

2 2 2

2 2
, ,yy yz zz

U U U

z y z y
  

  
   
   

  

                                                                                                                     

and the governing equations take the form 
 

(3.21)                   
4 22 0,U       
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(3.22)                 
2

2 20 0 0 0
0 ( ) 0,

(1 2 ) 2
e

T T
C U

 
   

  

 
      

   
                                                                                                        

where ij are stresses in thermoelastic medium,   is the temperature 

difference function and 0

2(1 )








. 

 Application of Laplace transform on Eqs. (3.21)-(3.22) and 

simplification thereafter results into 
 

(3.23)                                            2 2( ) 0,
s

c
      

 

(3.24)                                           2 4( ) 0.
s

U
c

   
 

  

After taking into consideration the line source which is acting in the 

thermoelastic half-space, the general solutions of Eqs. (3.23)-(3.24) become  

 

(3.25)                          
0 2

0

sin
,

cos

ky
U U dk

ky



 

   
 


 

  

(3.26)                          
0 2

0

sin
,

cos

ky
dk

ky
  


 

   
 

  

Where 
 

(3.27)                         
2 2 2 2( ) ,mz kzA e B kzC e       

 

(3.28)                         
2

2 2 2( ),mz kzs
A e k C e

c
 



  

 
                                                                                                                                   

2A , 2B  and 2C may be functions of k . 0U and 0 are given in Eqs. (2.2) and 

(2.3). Eq. (3.20) gives 

 

(3.29)                          2

0

sin
,

cos
yy

ky
G dk

ky



 

  
 

   
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(3.30)                         2

0

cos
,

sin
yz

ky
S dk

ky



 

  
 


 

  

(3.31)                          
2

0

sin
,

cos
zz

ky
N dk

ky



 

  
 

                                                                                                                                                

where 

(3.32)                      

2 2

2 0 0 0 0

2 2

2 2 2

( 2 )

( (2 ) ) ,

m z h k z h

mz kz

G m A e k B C k z h C e

m A e k B kz C e

   

 

    

   
   

                                     

(3.33)                       
2 0 0 0

2 2 2

[ ( ( (1 ) ) )

( (1 ) ) ],

m z h k z h

mz kz

S k mA e k B k z h C e

mA e k B kz C e

   

 

     

   
     

                                    

(3.34)                       

2

2 0 0 0

2 2 2

[ ( )

( ) ].

m z h k z h

mz kz

N k A e B k z h C e

A e B kzC e

   

 

    

  
   

                                                               

The components of displacement can be expressed as 
 

(3.35)                      
2

0

cos
2 ,

sin
y

ky
u V dk

ky


  
  

 


 
  

(3.36)                      
2

0

sin
2 ,

cos
z

ky
u W dk

ky



 

  
 


 

 

where 

(3.37)                     

2 0 0 0

2 2 2

( ( 2 2) )

( ( 2 2) ) ,

m z h k z h

s

mz kz

s

V k A e B k z h C e

A e B kz C e





   

 

     


       
 

(3.38)                     
2 0 0 0

2 2 2

( ( (1 2 ) ) )

( (1 2 ) ) .

m z h k z h

s

mz kz

s

W mA e k B k z h C e

mA e B k kz C e





   

 

      

      
 

The heat flux in z -direction is obtained as 
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(3.39)                        
0 2

0

sin
, ,

cos
z z

ky
q F dk

ky
 


 

    
 

   

  

where 

(3.40)    3 3

2 0 0 0 2 2 .
m z h k z h mz kzs s

F mA e k C e mA e k C e
c c

 
 

     
  

      
    

                                                                         

4. Boundary Conditions 

 

At the interface of half-spaces, the displacements and stresses are 

continuous. Hence 
 

(4.1)              y yu u  , 
z zu u  , yz yz   , zz zz   at 0z   . 

 

Also, the interface is supposed to be adiabatic and impermeable. Hence 
 

(4.2)                                  0zq   and 0zq 
 
at 0z  . 

 

       Let 0A
( 0A

), 0B
( 0B

) and 0C 
( 0C 

) be the values of 0A , 0B and 0C  
 

for z h ( z h ) respectively. The boundary conditions (4.1) and (4.2) yield 

the system 

 

2 2 2 1 1 1 0 0 0 0

2 2 1 1 0 0 0

2 2 2 1 1 1

0 0 0

2 2 2 1 1

( ) ,

( ) ,

2( 1) 2 (1 )

( (2 2 )) ,

(1 2 )
(4.3)

mh kh

mh kh

s r r r u

mh kh

s

s r r

mA kB kC m A kB kC mA e B C kh C ke

A B A B A e B C kh e

A B C A B C

A e B C kh e

mA kB k C m A kB

    



  

     

    

    

        

      

      

     

      1

0 0 0

3 3

2 2 0 0

3

1 1

(1 2 )

( (1 2 ) ,

,

0,

r u

mh kh

s

mh kz

k C

mA e B C kh ke

ms ms
A k C A e k C e

c c

m s
A k C

c

 



 



    

   








 

     

   



  
    

 

where /r   . 

When these conditions are enforced, the unknowns are determined as: 
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2 1
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1
1 1 0 0 0 1 2 2 1 0

1 2 1 2
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2

2 0 1

, ,

21
1 1 ,

2

2(1 )
,

1

(4.4)
2
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   
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2
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1 2 2 1 0

1

2 0 0 0 1 0

2
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21
1 1 ,

2

2 1
1 ,

1

mh kh

kh

mh kh kh

k
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Q
C A e B C kh e Q C e

    

 

      










  
       


 
        




    


 
where, 

1

4 3

1

s r

r

P
 



 



, 

 
2

4 3 1

1

u r

r

P
 



 



, 1

1

1 2

1

( )

P
Q

P





, 

 1

2

2 1

1

( )

P
Q

P





, 

2

1
( )

k

m m k

 
 

  
, 

2

2
( )

k

m m k


 


 . 

     

 Using these values of
1A , 2A ,

1B , 2B ,
1C  and 2C  in Eqs. (3.5)-(3.19), 

(3.26)-(3.40), the integral expressions are obtained for the displacement and 

stress components in both the half-spaces, pore pressure and fluid flux in 

poroelastic half-space and the temperature difference function and heat flux 

in thermoelastic half-space in terms of the source coefficients 0A
, 0B

and 

0C 
.  Numerical computation of these integrals is possible for every value of 

t.  But, their exact expressions can be obtained for two special limiting 

cases: 

 (i) 0t   i.e. there is no time for net flow of heat (fluid flow) in 

thermoelastic (poroelastic) medium which correspond to the adiabatic 

(undrained) conditions; 

 (ii) t    i.e. sufficient time for flow of heat (fluid flow), which implies 

the isothermal (drained) conditions. 
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5. Vertical Dip-Slip Fault: Particular Solutions 

 

The double couple ( ) ( )yz zy , having moment yzD bdl , corresponds 

to a vertical dip-slip fault
34

. Here b is the slip and dl is the width of the 

dislocation. 

The source coefficients for the dip-slip fault (Table 1) are 

 

(5.1)         
1 1 1

0 0 02 2

(1 )
, ,

(1 ) (1 ) 2 (1 )

yz yz yzcc kD cc kD D c
A B C

s s ks     

  


    
  

    

                                                                                        

and the upper solution is to be selected in the integrals. 

5.1 Poroelastic half-space: Biot’s stress function, stresses, displacements 

and pore pressure are obtained for the following particular cases: 

Case (i) Undrained condition; 
 

(5.2)           1

3 4 3 4 2

1

1
( ) tan ( ) ,

2 (1 ) 2
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s

D y y
F Q Q Q h Q z

h z R 
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   
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     
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(5.6)                       
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(5.8)                        4 4

1
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,
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s

D y h z
p Q

R



 

  
  

  
    

                                                                                                                                        

where 2 2 2

1 ( )R y z h   ,  3 1 11 /Q P P  ,  4 1 21 /Q P P   . 

Case (ii) Drained condition; 

We denote 
 

(5.9)   
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3
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
 ,  6 4 3 1Q P P  . 

                                                                       

The expressions for displacement and stress components for the drained 

condition are similar to that for the undrained condition if we replace u  by 

 , s  by  , 3Q by 5Q and 4Q  by 6Q . The pore pressure is found zero. 

5.2 Thermoelastic half-space: Airy stress function, stresses, displacements 

and temperature difference function are obtained for the following particular 

cases: 

Case (i) Adiabatic condition; 
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where 2 2 2

2 ( )R y z h   , 
7 3 1Q Q  , 

8 3 4

1
( )

2
Q Q Q   .

 
Case (ii) Isothermal Case; 

We denote 

  

(5.17)               9 5 1Q Q  ,
10 5 6

1
( )

2
Q Q Q  

 
 

 
The expressions for displacement and stress components for the 

isothermal condition are similar to that for the adiabatic condition if we 

replace 
s  by  , 3Q by 5Q , 4Q  by 6Q , 7Q  by 9Q and 8Q  by 10Q . 

 

6. Numerical results and discussion 

 

       The stresses and displacements in the two half-spaces, temperature 

function in thermoelastic medium and pore pressure in porous medium due 

to a vertical dip-slip dislocation source through a point (0,0, )h  are given in 

Eqs. (5.3)-(5.8) and (5.11)-(5.16) for adiabatic and undrained conditions. For 

isothermal and drained conditions, the solutions can be obtained by 

replacing u  by  , s  by , 3Q by 5Q , 4Q  by 6Q , 7Q  by 9Q and 8Q  by 10Q  in 

Eqs. (5.3)-(5.7) and (5.11)-(5.15). The pore pressure and temperature 

function become zero in these cases.  

6.1 Validation of the solutions: A comparison between the particular cases 

of the results obtained in this paper and those obtained in earlier studies is 

made to verify the present results. 
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It is observed that 

(i) If the thermoelastic medium is made elastic by taking 
s  or 0  , 

the results coincide with that of Rani and Singh
25

.  

(ii) By taking the rigidity of poroelastic half-space zero (the model will be 

a uniform thermoelastic half-space), the results coincide with that of 

Vashishth and Rani
33

. 

(iii) For the limiting case t  (isothermal and drained conditions), the 

results coincide with that obtained by Singh et al.
3
. 

6.2 Numerical computation: For the numerical computation of the results, 

the parameters of thermoelastic and poroelastic solid half-spaces are taken 

as 0.25  , 0.3023s  , 
5 13.11 10t K    , 0 1000T K , 

7 25.2385 10 /c m s  , 0.88,B  0.65  ,  3 25.3 10 /c m s   , 0.12   

and 0.31u  . For the poroelastic half-space, the parameters are taken for 

Ruhr Sandstone
19

. The thermoelastic half-space is assumed Possionian and 

s and c  are calculated for the pyrope rich garnet
35

. The displacements, 

stresses, pore pressure and temperature difference functions are computed 

numerically for vertical dip-slip dislocation (Figs. 2 to 13) and line heat 

source (Figs. 14-15) and are presented graphically. 

The non-dimensional quantities are defined as 
 

(6.1)                 
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Figure 2. Variation of the displacements with Y  at Z =0  for 2r  : (a) horizontal 

displacement (b) vertical displacement. 
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Figure 3. Variation of displacements with Y  at Z =0 for 1/ 2r  : (a) horizontal 

displacement (b) vertical displacement. 
                  

Figures 2 and 3 depict the variation of displacements along the 

horizontal distance from the fault (Y ) at the interface Z =0 for 2r   and 

1/ 2r  respectively for undrained and drained conditions. It is observed 

that the difference between undrained and drained horizontal displacement 

is large near the fault line (Y =0) whereas for the vertical displacement, this 

difference is noticed as Y  increases. The magnitude of the displacements is 

large for 2,r 
 
i.e., when the rigidity of thermoelastic medium is greater 

than that of the poroelastic medium. The more stiff the poroelastic half-

space is, the more difference in undrained and drained displacements is 

observed. The present results for drained conditions match with the 

corresponding results obtained by Rani and Singh
25

. However, for the 

undrained conditions, the difference due to inclusion of thermal effect in the 

half-space containing the source is explicitly observed.  

As the expressions of displacements, stresses, temperature difference 

function and pore pressure are in Laplace transform domain, Schapery
36

’s 

formula for Laplace inversion is used to compute the results in time domain. 

The semi infinite integrals are evaluated by using Gauss quadrature formula. 

The variation of pore pressure with time T at Z =0, -1, -2 and Y =1 is 

demonstrated in Fig. 4. The pore pressure has highest amplitude at Z =0 for 

all times and diffuses with time at all depths. Fig. 5a and b depict the 

variation of pore pressure with Y  at Z =0 and Z = -1 at different times T=0 

, 0.1, 1, 10 ,  . It is observed that the pore pressure is maximum in 

undrained state (T=0) and zero in drained state (T  ) which is physically 

acceptable as there is sufficient time to diffuse the fluid from the medium. 
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The point of maxima moves away along Y  as T increases. Depth profile of 

pore pressure is exhibited in Fig. 6 for T=0, 0.1, 1, 10,  . A sharp decay in 

pore pressure with depth is observed. The graphs for pore pressure in Figs. 

4, 5 and 6 are same as that plotted by Rani and Singh
25

. It has been verified 

analytically for undrained case. 
 

 
Figure 4. Variation of pore pressure against dimensionless time T  

 for 1/ 2r   at Z =0, -1, -2.  

 

 
Figure  5. Pore pressure distribution with Y  for 1/ 2r   

(a) Z =0, (b)
 
Z = -1. 

 
Figure 6. Variation of pore pressure with depth for 1/ 2r   at Y =1. 
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Figure 7. Variation of horizontal displacements (a) and vertical displacement 

(b) with Z  at Y =1, 5 for 2r  . ( Here the scale factor  is used) 

 

Depth profiles of the displacements, for the two limiting cases 0T  and 

T  , at Y =1, 5 for 2r   are plotted in Fig. 7 and for 2 / 3r  , in Fig. 

8. The time 0T  , in thermoelastic medium corresponds to adiabatic 

condition and undrainded condition in poroelastic medium and T   

corresponds to isothermal and drained conditions respectively. For T  , 

the graphs of displacements coincide with that of Singh et al.
3
. Figures 9 and 

10 depict variation of displacements along Y  at four receivers Z =-0.5, 0, 

0.5 ,5 for 2r   and 2 / 3r   respectively. The displacements for two 

limiting cases are compared.  

 
Figure 8. Variation of horizontal displacements (a) and vertical displacement (b) with Z  

for Y =1,5 and 2 / 3r  . 
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Figure 9. Variation of displacements with Y  at Z =-0.5, 0, 0.5, 5 for 2r  : (a) 

horizontal, (b) vertical displacement 

 

 
 

Figure 10. Variation of displacements with Y  at Z =-0.5, 0, 0.5 ,5 for 2 / 3r   : (a) 

horizontal, (b) vertical displacement. 

The variation of temperature increment function along dimensionless 

time T is demonstrated in Fig. 11 for 2r   and Y =1, 2 at Z =0, 0.5, 1, 1.5, 

2. The temperature difference function is negative between the interface and 

the fault line and positive below the fault line at all times. It is almost zero 

on the fault/ source line. Figure 11a shows that for Y =1, it attains its 

maximum and minimum values at Z =1.5 and Z =0.5 respectively. The 

point of maxima and minima shifted away to Z =2 and Z =0 for Y =2 as 

shown in Fig.11b. 
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Figure 11. Variation of temperature function with T for 2r   at Z =0, 0.5, 1, 1.5, 2: (a) 

Y =1, (b)
 
Y =2. 

 

 
Figure 12. Variation of temperature function with Y for 2r  : (a) Z =0, (b) Z =0.5, (c)

 
Z =1.5, (d) Z =2. 
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Figure 13. Variation of temperature function with Z  for 2r  : (a) Y =1, (b)

   
Y =2. 

 

Figs. 12a to d present the variation of temperature difference along Y  at 

Z =0, 0.5. 1.5, 2 respectively for T=0 (adiabatic), 1, 1000,  (isothermal). It 

verifies the description of Fig. 11. It is noticed that at Z =0, temperature has 

maximum magnitude at T=1000, but in all other cases, maximum magnitude 

is observed for adiabatic condition. For isothermal condition, 0 . Depth 

profile of   is shown in Fig. 13 for Y =1 and 2. The temperature difference 

is noticeable 0< Z <4 and approaches to zero as Z  increases. 

For line heat source, the dimensionless quantities are defined as 
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where q  is the amount of heat generated per unit length. 

 

 
Figure 14. Variation of temperature function in thermoelastic medium due to heat source. 
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Figure 15. Distribution of stresses in thermoelastic medium due to heat source 

 

Variation of temperature function due to line heat source is shown in Fig. 

14. As the time increases, temperature increases. But as the distance from 

the heat source increases, the temperature function decreases. Contours for 

stresses in thermoelastic medium due to heat source are plotted in Fig. 15. 

These maps exhibit the variation of elastic field around the heat source.  

 

7. Conclusion 

 

A study of 2D quasi static deformation of a medium, composed of a 

homogeneous isotropic thermoelastic solid in welded contact with a 

homogeneous isotropic poroelastic solid due to a line source (horizontal and 

vertical line forces, dip-slip dislocation, heat source) in thermoelastic 

medium, is carried out. The solutions for dip-slip line dislocation are 

evaluated analytically for two limiting cases: adiabatic and isothermal 

conditions in thermoelastic medium and undrained and drained conditions in 

poroelastic medium. It is observed that the difference between undrained 

and drained horizontal displacement in poroelastic medium is large near the 

dip-slip fault line whereas for the vertical displacement, this difference is 

noticeable as distance from the fault increases. The amplitude of the 

displacements is large when the thermoelastic solid is stiffer than the 

poroelastic solid. The more rigid the poroelastic medium is, the more 

difference in drained and undrained displacements is observed. The pore 

pressure has maximum amplitude at interface for all times and diffuses with 

time at all depths. Between the interface and the fault line, the temperature 

decreases but it increases below the fault line. The maximum temperature 

difference has been observed for adiabatic condition. Contours for stresses 
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in thermoelastic medium due to heat source exhibit the variation of elastic 

field around the heat source. So, it can be concluded that the effect of 

inclusion of thermoelasticity in the half-space containing the source is 

considerably different in comparison to elastic and/or poroelastic half-

spaces. 
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