Generalized Sasakian-Space-Form with W_{4} Curvature Tensor

Abhishek Singh and C. K. Mishra
Department of Mathematics \& Statistics
Dr. Rammanohar Lohia Avadh University, Ayodhya, U.P, India
Email: abhi.rmlau@gmail.com
Email: chayankumarmishra@ gmail.com

(Received April 06, 2018)

Abstract

In this paper, we study generalized Sasakian-space-form with W_{4} curvature tensor. We find some relations between differentiable functions f_{1}, f_{2} and f_{3} and we also find Ricci-tensor, Ricci-operator and scalar curvature in a W_{4} flat generalized Sasakian-space-form.

Keywords: Ricci-tensor, Ricci-operator and scalar curvature, Sasakian-space-form, W_{4} curvature tensor.
2010 AMS Classification Number: 53C25, 53D15.

1. Introduction

Alegre et al. ${ }^{1}$ introduced and studied the notion of generalized Sasakian-space-form. A generalized Sasakian-space-form is an almost contact metric manifold (M, φ, ξ, η, g) whose curvature tensor is given by

$$
\begin{align*}
R(X, Y) Z & =f_{1}[g(Y, Z) X-g(X, Z) Y] \otimes \tag{1.1}\\
& +f_{2}[g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z] \\
& +f_{3}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi],
\end{align*}
$$

where f_{1}, f_{2} and f_{3} are differentiable functions on M and X, Y, Z are vector fields on M. In such case we shall write generalized Sasakian-spaceform as $M\left(f_{1}, f_{2}, f_{3}\right)$. This type of manifold appears as a natural generalization of the well known Sasakian-space-form $M(c)$, which can be obtain as a particular case of generalized Sasakian-space-form by taking $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$, where ${ }^{c}$ denotes the constant φ - sectional curvature. Moreover, cosympletic space form, Kenmotsu space forms are also particular cases of generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$. Alegre and Carriazo ${ }^{2}$ also studied contact metric and trans-Sasakian generalized Sasakian-space-forms. Kim^{3} in his paper studied conformally flat and locally symmetric generalized Sasakian-space-form.

In this present paper generalized Sasakian-space-form with W_{4} curvature tensor has been studied. In a W_{4} flat generalized Sasakian-space-form we also find Ricci-tensor, Ricci-operator and scalar curvature. The notion of W_{4} curvature tensor was introduced by G. P. Pokhariyal ${ }^{4}$. A $(2 n+1)$-dimensional Riemannian M is W_{4} flat if $W_{4}=0$, where W_{4} curvature tensor is defined as

$$
\begin{equation*}
W_{4}(X, Y) Z=R(X, Y) Z+\frac{1}{2 n}[g(X, Z) Q Y-g(X, Y) Q Z] \tag{1.2}
\end{equation*}
$$

Where Q is the field of symmetric endomorphism corresponding to the Ricci tensor S i.e. $g(Q X, Y)=S(X, Y)$.

If a Riemannian manifold satisfies $R(X, Y) W_{4}=0$, where W_{4} is a W_{4} curvature tensor, then the manifold is said to be W_{4} semi-symmetric manifold.

2. Preliminaries

In this section, we recall some general definitions and basic formulas which will use later. For this, we recommend the reference ${ }^{5}$. A $(2 n+1)$-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if there exist a $(1,1)$ tensor field φ, a unique global
non-vanishing structural vector field ξ (called the vector field) and a 1-form η such that

$$
\begin{align*}
& \varphi^{2} X=-X+\eta(X) \xi, \quad \varphi \xi=0, \quad \eta(\xi)=1, \tag{2.1}\\
& d \eta(X, \xi)=0, \quad g(X, \xi)=\eta(X), \\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \\
& d \eta(X, Y)=g(X, \varphi Y), \quad \eta O \varphi=0 .
\end{align*}
$$

Such a manifold is called contact manifold if $\eta \wedge(d \eta)^{n} \neq 0$, where n is $n^{\text {th }}$ exterior power. For contact manifold we also have $d \eta=\Phi$, where $\Phi(X, Y)=g(\varphi X, Y)$ is called fundamental 2 -form on M. If ξ is killing vector field, then M is said to be K-contact manifold. The almost contact metric structure (φ, ξ, η, g) on M is said to be normal if

$$
\begin{equation*}
[\varphi, \varphi](X, Y)+2 d \eta(X, Y) \xi=0, \tag{2.5}
\end{equation*}
$$

for all vector field X, Y on M, where $[\varphi, \varphi$] denotes the Nijenhuis tensor of φ given by

$$
\begin{equation*}
[\varphi, \varphi](X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] . \tag{2.6}
\end{equation*}
$$

An almost contact metric manifold M is said to be η-Einstein if its Riccitensor S is of the form

$$
\begin{equation*}
S(X, Y)=c g(X, Y)+d \eta(X) \eta(Y), \tag{2.7}
\end{equation*}
$$

Where c and d are smooth functions on M. A η-Einstein manifold becomes Einstein if $d=0$.

If $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in an almost contact metric manifold M of dimension $(2 n+1)$, then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots \ldots, \varphi e_{2 n}, \xi\right\}$ is also a local orthonormal basis. It is easy to verify that

$$
\begin{align*}
& \sum_{i=1}^{2 n} g\left(e_{i}, e_{i}\right)=\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi e_{i}\right)=2 n, \tag{2.8}\\
& \begin{aligned}
\sum_{i=1}^{2 n} g\left(e_{i}, Y\right) S\left(X, e_{i}\right) & =\sum_{i=1}^{2 n} g\left(\varphi e_{i}, Y\right) S\left(X, \varphi e_{i}\right) \\
& =S(X, Y)-S(X, \xi) \eta(Y),
\end{aligned}
\end{align*}
$$

for all $X, Y \in T(M)$. In view of (2.4) and (2.9) and we have

$$
\begin{align*}
\sum_{i=1}^{2 n} g\left(e_{i}, \varphi Y\right) S\left(\varphi X, e_{i}\right) & =\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi Y\right) S\left(\varphi X, \varphi e_{i}\right) \tag{2.10}\\
& =S(\varphi X, \varphi Y)
\end{align*}
$$

3. Some Results on Generalized Sasakian-Space-Form

For a generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ of dimension $(2 n+1)$, we have

$$
\begin{align*}
& R(X, Y) \xi=\left(f_{1}-f_{3}\right)[\eta(Y) X-\eta(X) Y], \tag{3.1}\\
& S(X, Y)= \tag{3.2}\\
& =\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y) \\
& \\
& -\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) .
\end{align*}
$$

From (3.1), we have

$$
\begin{equation*}
R(X, \xi) \xi=\left(f_{1}-f_{3}\right)[X-\eta(X) \xi] \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
R(X, \xi) Y=\left(f_{1}-f_{3}\right)(\eta(Y) X-g(X, Y) \xi) \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& Q(X)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi . \tag{3.5}\\
& r=2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3}, \tag{3.6}
\end{align*}
$$

Where Q is the Ricci operator and r is the scalar curvature of $M\left(f_{1}, f_{2}, f_{3}\right)$. Now from (3.2) and (3.5), we have

$$
\begin{equation*}
S(X, \xi)=2 n\left(f_{1}-f_{3}\right) \eta(X), \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
Q \xi=2 n\left(f_{1}-f_{3}\right) \xi \tag{3.8}
\end{equation*}
$$

from (3.7), we get

$$
\begin{align*}
\sum_{i=1}^{2 n} S\left(e_{i}, e_{i}\right) & =\sum_{i=1}^{2 n} S\left(\varphi e_{i}, \varphi e_{i}\right) \tag{3.9}\\
& =r-2 n\left(f_{1}-f_{3}\right),
\end{align*}
$$

Where r is scalar curvature. In a generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$, we also have

$$
\begin{align*}
R(X, \xi, \xi, Y) & =R(\xi, X, Y, \xi) \tag{3.10}\\
& =\left(f_{1}-f_{3}\right) g(\varphi X, \varphi Y)
\end{align*}
$$

and

$$
\begin{array}{r}
\sum_{i=1}^{2 n} R\left(e_{i}, X, Y, e_{i}\right)=\sum_{i=1}^{2 n} R\left(\varphi e_{i}, X, Y, \varphi e_{i}\right) \tag{3.10}\\
=S(X, Y)-\left(f_{1}-f_{3}\right) g(\varphi X, \varphi Y)
\end{array}
$$

for all $X, Y \in T(M)$.

4. W_{4} - Flat Generalized Sasakian-Space-Form

Let $M\left(f_{1}, f_{2}, f_{3}\right)$, be a $(2 n+1)$-dimensional generalized Sasakianspace form. The Riemannian curvature tensor R, the Ricci-tensor S and the Ricci-operator Q of M are given by equations (1.1), (3.2) and (3.5) respectively. Putting the value of $R(X, Y) Z, S(X, Y)$ and $Q X$ in the equation (1.2), we get

$$
\begin{align*}
W_{4}(X, Y) & Z \tag{4.1}\\
& =f_{1}[g(Y, Z) X-g(X, Z) Y] \\
& +f_{2}[g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z] \\
& +f_{3}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X
\end{align*}
$$

$$
\begin{aligned}
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi] \\
& +\frac{1}{2 n}\left[g (X , Z) \left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right) Y\right.\right. \\
& \left.-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(Y) \xi\right\} \\
& -g(X, Y)\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right) Z\right. \\
& \left.\left.-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(Z) \xi\right\}\right] .
\end{aligned}
$$

On simplifying above equation, we get

$$
\begin{align*}
W_{4}(X, Y) & Z \tag{4.2}\\
& =\frac{1}{2 n}\left(3 f_{2}-f_{3}\right) g(X, Z) Y+f_{1}(g(Y, Z) X) \\
& +f_{2}[g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X \\
& +2 g(X, \varphi Y) \varphi Z]+f_{3}[\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X-g(Y, Z) \eta(X) \xi] \\
+ & \frac{1}{2 n}\left(f_{3}-3 f_{2}\right) g(X, Z) \eta(Y) \xi \\
& -\frac{1}{2 n}\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y) Z \\
& +\frac{1}{2 n}\left(3 f_{2}+(2 n-1) f_{3}\right) g(X, Y) \eta(Z) \xi
\end{align*}
$$

If $M\left(f_{1}, f_{2}, f_{3}\right)$ is W_{4} flat, then we have $W_{4}(X, Y) Z=0$. If we put $X=\varphi Y$ in the above equation, we get

$$
\begin{align*}
& \frac{1}{2 n}\left(3 f_{2}-f_{3}\right) g(\varphi Y, Z) Y+f_{1}(g(Y, Z) \varphi Y)+f_{2}[g(Y, Z) \varphi Y \\
& -\eta(Y) \eta(Z) \varphi Y+g(Y, \varphi Z) Y-g(Y, \varphi Z) \eta(Y) \xi+2 g(Y, Y) \varphi Z \\
& -2 \eta(Y) \eta(Y) \varphi Z]+f_{3}[-\eta(Y) \eta(Y) \varphi Y \\
& +\frac{1}{2 n}\left(f_{3}-3 f_{2}\right) g(\varphi Y, Z) \eta(Y) \xi \tag{4.3}\\
& -\frac{1}{2 n}\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(\varphi Y, Y) Z \\
& +\frac{1}{2 n}\left(3 f_{2}+(2 n-1) f_{3}\right) g(\varphi Y, Y) \eta(Z) \xi=0 .
\end{align*}
$$

If we choose a unit vector field U such that $\eta(U)=O$ and putting $Y=U$ in the equation (4.3), then we get

$$
\begin{align*}
& \frac{1}{2 n}\left(3 f_{2}-f_{3}\right) g(\varphi U, Z) U+f_{1}(g(U, Z) \varphi U)+f_{2}[g(U, Z) \varphi U \\
& -g(\varphi U, Z) U+2 \varphi Z]-\frac{1}{2 n}\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(\varphi U, U) Z \tag{4.4}\\
& +\frac{1}{2 n}\left(3 f_{2}+(2 n-1) f_{3}\right) g(\varphi U, U) \eta(Z) \xi=0
\end{align*}
$$

Again taking $Z=U$ in the equation (4.4), we get

$$
\begin{equation*}
\left(f_{1}+3 f_{2}\right) \varphi U=0 \tag{4.5}
\end{equation*}
$$

In view of equation (4.5), we have the following theorem:
Theorem 4.1: In a W_{4} flat generalized Sasakian-space-form $\left(f_{1}+3 f_{2}\right)=0$.

Now under the consideration of W_{4} flat manifold equation (1.2) reduces to

$$
\begin{equation*}
R(X, Y, Z, U)=\frac{1}{2 n}[g(X, Z) S(Z, U)-g(X, Z) S(Y, U)] \tag{4.6}
\end{equation*}
$$

where $R(X, Y, Z, U)=g(R(X, Y) Z, U)$. Putting $Z=\xi$ in the equation (4.6) and using equations (2.2), (3.1) and (3.7), we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)[\eta(Y) g(X, U)-\eta(X) g(Y, U)] \\
& =\frac{1}{2 n}\left[2 n\left(f_{1}-f_{3}\right) \eta(U) g(X, Y)-\eta(X) S(Y, U)\right] \tag{4.7}
\end{align*}
$$

Now putting $X=\xi$ and using equations (2.1) and (2.2), we get

$$
\begin{equation*}
S(Y, U)=2 n\left(f_{1}-f_{3}\right) g(Y, U) \tag{4.8}
\end{equation*}
$$

Putting $U=\xi$ in the equation (4.8), we get

$$
\begin{equation*}
Q Y=2 n\left(f_{1}-f_{3}\right) Y \tag{4.9}
\end{equation*}
$$

If $\left\{e_{1}, e_{2}, \ldots \ldots ., e_{2 n}, e_{2 n+1} \xi\right\}$ is a local orthonormal basis of vector fields in $M\left(f_{1}, f_{2}, f_{3}\right)$, then from equation (4.8), we get

$$
\sum_{i=1}^{2 n+1} S\left(e_{i}, e_{i}\right)=2 n\left(f_{1}-f_{3}\right) \sum_{i=1}^{2 n+1} g\left(e_{i}, e_{i}\right) .
$$

Using equation (2.8), we get

$$
\begin{equation*}
r=2 n(2 n+1)\left(f_{1}-f_{3}\right) . \tag{4.10}
\end{equation*}
$$

Theorem 4.2: In a W_{4} flat generalized Sasakian-space-form, the Riccitensor S, the Ricci-operator Q and the scalar curvature rare given by the equations (4.8), (4.9) and (4.10) respectively.

References

1. P. Alegre, D. E. Blair and A. Carriiazo, Generalized Sasakian Space Form, Israel J. Math., 14 (2004), 157-183.
2. P. Alegre and A. Carriiazo, Structures on Generalized Sasakian-space-form, Diff. Geo. and its Application, 26(6) (2008), 656-666.
3. U. K. Kim, Conformally Flat Generalized Sasakian-Space-Forms and Locally Symmetric Generalized Sasakian-Space-Forms, Note di Mathematica, 26(1) (2006), 55-67.
4. G. P. Pokhariyal, Curvature Tensors and Their Relative Significance III, Yokohama Math. J., 20 (1973), 115-119.
5. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser Boston, 2002.
