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1. Introduction

Alegre et al.! introduced and studied the notion of generalized Sasakian-
space-form. A generalized Sasakian-space-form is an almost contact metric

manifold (M, ¢, &, 1, @) whose curvature tensor is given by

(1.1) R(X,Y)Z = f,[g(Y,Z) X —g(X,Z)Y]®

+ HI9(X, 9Z) oY —g(Y, 0Z) pX +29(X, ¢Y) ¢Z]

+H[(X)n(2)Y —=n(Y) n(Z) X
+9(X,Z)n(Y) &—-g(Y, Z) n(X) &],



114 Abhishek Singh and C. K. Mishra

where f, f, and f,are differentiable functions onM and X,Y,Z are
vector fields on M. In such case we shall write generalized Sasakian-space-
form as M (f, f,, f,). This type of manifold appears as a natural
generalization of the well known Sasakian-space-form M (c), which can be

obtain as a particular case of generalized Sasakian-space-form by taking

f, = %3 and f, = f, = CT_l ,whereCdenotes the constant¢ — sectional

curvature. Moreover, cosympletic space form, Kenmotsu space forms are
also particular cases of generalized Sasakian-space-formM (f,, f,, f,).

Alegre and Carriazo® also studied contact metric and trans-Sasakian
generalized Sasakian-space-forms. Kim?® in his paper studied conformally
flat and locally symmetric generalized Sasakian-space-form.

In this present paper generalized  Sasakian-space-form
withW, curvature tensor has been studied. In a W, flat generalized Sasakian-

space-form we also find Ricci-tensor, Ricci-operator and scalar curvature.
The notion of W, curvature tensor was introduced by G. P. Pokhariyal®. A

(2n +1)—dimensional Riemannian M is W,flat if W, =0, where
W, curvature tensor is defined as

(1.2 W,(X,Y)Z =R(X,Y)Z +2—1n[9(X, Z)QY - g(X,Y)Qz],

Where Qis the field of symmetric endomorphism corresponding to the
Ricci tensor Si.e. g(QX,Y)=S(X,Y).

If a Riemannian manifold satisfies R(X,Y)W, =0, where W, is a W,

curvature tensor, then the manifold is said to be W, semi-symmetric
manifold.

2. Preliminaries

In this section, we recall some general definitions and basic formulas
which will use later. For this, we recommend the reference’. A
(2n +1) —dimensional Riemannian manifold (M, g) is said to be an almost

contact metric manifold if there exist a (1,1) tensor field ¢, a unique global
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non-vanishing structural vector field & (called the vector field) and a
1-form 7 such that

(2.1) P X ==X +n(X)&, 95=0, n(¢&)=1
(2.2) dn(X,£)=0,  g(X,&)=n(X),
(23) g(X.0¥)=g(X.Y)=n(X)n(Y),
(2.4) d7(X,Y)=g(X,¢Y),  nop=0.

Such a manifold is called contact manifold if 7 A (d77)" =0, wheren is n"
exterior power. For contact manifold we also havedn=®, where
D(X,Y)=9g(pX,Y) is called fundamental 2—form onM.If &is killing

vector field, then M is said to be K —contact manifold. The almost contact
metric structure (¢, &, 77, g) on M is said to be normal if

(2.5) [p, 0] (X,Y) +2d7 (X,Y) =0,

for all vector field X,Y on M, where [¢, ¢] denotes the Nijenhuis tensor
of ¢ given by

(2.6) [0, o] (X, Y) =@’[X, Y1+ [0X, oY 1-pl@pX, Y] - o[ X, oY ].

An almost contact metric manifold M is said to be 7 — Einstein if its Ricci-
tensor S is of the form

(2.7) S(X,Y)=cg(X,Y)+dn(X)n(Y),

Where ¢ and d are smooth functions on M. A 7 —Einstein manifold
becomes Einstein if d = 0.

If {e,,e,,.......,e,,, &} is a local orthonormal basis of vector fields in an
almost contact metric manifold M of dimension (2n +1), then
{pe, pe,,......,pe,., £} is also a local orthonormal basis. It is easy to verify
that
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28) S a(e. )= a(pe, po)=2n,

i=1

396, ) S(X,8) = D g(pe, ) S(X, ge)
= S(X1Y) - S(X! 5) 7](Y),

forall X,Y eT(M). Inview of (2.4) and (2.9) and we have

(2.9)

2n 2n
Zg(eiv @Y) S(pX,e) = Zg(¢ei!¢Y) S(pX, &)
(2.10) = =1
=S(pX, 9Y).
3. Some Results on Generalized Sasakian-Space-Form

For a generalized Sasakian-space-form M (f, f,, f,) of dimension
(2n +1), we have

(3.1) R(X,Y)& = (f, = f) [n(Y) X =n(X) Y],

S(X,Y) = (@nf+3f,— f,)g(X,Y)

(3.2)
- (3f, + (2n-1) f,) n(X) n(Y).

From (3.1), we have

3.3) R(X, &) &= (f, - K)[X—n(X)<],

(34) R(X, &)Y =(f,~ £) (V) X ~g(X,Y)&),

(3.5) Q(X) =(2nf, +3f,— f,) X — (3, + (2n—1) £,) n(X) &
(3.6) r =2n(2n+1) f, +6nf, — 4nf,,

Where Q is the Ricci operator and r is the scalar curvature of
M (f,, f,, f,). Now from (3.2) and (3.5), we have
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(3.7) S(X, &) =2n(f, - f;) n(X),
and
(3.8) Q¢ =2n(f, - f,)¢&

from (3.7), we get

Z_nls(ei’ &)= Z_n:S(Wi’ 2y
=r-2n(f, - f,),

(3.9)

Where ris scalar curvature. In a generalized Sasakian-space-form
M (f, f,, f,), we also have

R(X,&,8,Y)=R(S XY, %)

3.10

o0 =(f,— f,)9(pX, ¢Y),
and

(3.10) Z_n:R(ew X’Y’ei):Z_n:R(Qei, X,Y, pe)

=S(X,Y)-(f, - f,)g(pX, oY),

forall X,Y eT(M).
4. W, - Flat Generalized Sasakian-Space-Form

Let M (f, f,, f,),be a(2n+1)—dimensional generalized Sasakian-
space form. The Riemannian curvature tensor R, the Ricci-tensor S and the
Ricci-operatorQof M are given by equations (1.1), (3.2) and (3.5)
respectively. Putting the value of R(X,Y)Z,S(X,Y)and QX in the
equation (1.2), we get

4.1)  W,(X,Y)Z=1[g(Y,Z)X =g(X,Z)Y]

+ f,[9(X, 9Z) oY —g(Y, pZ) pX +29(X, ¢Y)pZ]
+ 5 [n(X)n(Z2)Y —n(Y) n(Z2) X
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+9(X, Z)n(Y) & —g(Y, Zm(X)<&]
+%[g(x, Z){(2nf, +3f, - f,)Y

—(3f, +(2n=1) ) n(Y) S}
—g(X,Y){(2nf, +3f,- f,) Z

- @f, +(2n -1 ;) n(Z) 3.

On simplifying above equation, we get

(4.2) W,(X,Y)Z =2 BF, - £)9(X, 2)Y + 1,(g(Y,2) X)

+ LI9(X, 9Z) oY —g(Y, pZ) pX
+29(X, oY) pZ]+ f[n(X)n(2) Y
—n(Y)n(Z) X —g(Y, Z) n(X) ]

Fon (1, -36)9(X,2) 1Y) &
n

L nf, +3f,- £,) g(X,Y) Z
2n
+2_1n(3f2 +@2n-1)1,) g(X,Y) n(Z) &

IftM (f,, f,, f,)is W, flat, then we have W, (X,Y)Z =0. If we put X =¢Y in
the above equation, we get

2_1n(3f2 —1)g(eY, Z)Y + F(9(Y. Z2)¥) + F,[a(Y, Z)gY

-n(Y)n(2)eY +9(Y, eZ)Y —=g(Y, 9Z)n(Y)& +29(Y,Y)pZ
=2n(Y)n(Y)pZ]+ f,[-n(Y)n(Y)pY

(4.3) Fon (1, -3E)9(0Y 2V

—2—1n(2nf1+3f2 —£,)9(eY,Y)Z

+%(3 f,+(2n-1)f,)g(eY,Y)n(Z)é =0.
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If we choose a unit vector field U such that »(U) =0 and puttingY =U in
the equation (4.3), then we get

(3T, - 1)U, 2)U+ 19U, 2)pU)+ IV, 2) U
(4.4) ~9(A,2)U +29Z]- - (20f, 431, - £ g(U,U) Z

Fom @+ (@0 ) 99U, U) (@) £ =0

Again taking Z =U in the equation (4.4), we get
(4.5) (f,+3f,)pU =0.
In view of equation (4.5), we have the following theorem:

Theorem 4.1: In a W,flat generalized Sasakian-space-form
(f,+3f,)=0.

Now under the consideration of W, flat manifold equation (1.2) reduces to

(4.6) R(X,Y,Z,U) :2—1n[g(X, Z)S(Z,U)—-g(X,Z)S(Y,U)],

where R(X,Y,Z,U)=g(R(X,Y) Z,U). Putting Z =¢ in the equation (4.6)
and using equations (2.2), (3.1) and (3.7), we get
(f, = B)[7(Y) 9(X,U) —n(X) (Y, U)]

4.7 1
== [2n(f, - £)n(U) 9(X, Y) ~n(X) S(Y, L))

Now putting X =& and using equations (2.1) and (2.2), we get
(4-8) S(Y'U):Zn(fl_fs)g(YaU)-
Putting U =¢& in the equation (4.8), we get

(4.9) QY =2n(f, - f,).
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If {e,e,,.....,e,,,86, £} is a local orthonormal basis of vector fields in
M (f, f,, f,;), then from equation (4.8), we get

2n+1 2n+1

ZS(ei, ei) = 2n(f1 - fs)zg(eir ei)'

Using equation (2.8), we get
(4.10) r=2n(2n+1) (f, - f,).

Theorem 4.2: In a W, flat generalized Sasakian-space-form, the Ricci-

tensor S,the Ricci-operator Q and the scalar curvaturer are given by the
equations (4.8), (4.9) and (4.10) respectively.
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