ISSN 0974 - 9373

Vol. 24 No. 4 (2020)  Journal of International Academy of Physical Sciences pp. 419- 431

Almost Kenmotsu Manifold Admitting Semi-Symmetric
Metric Connection

Shweta Naik and H. G. Nagaraja

Department of Mathematics
Bangalore University, Bengaluru-560056, India.
Email: naikshwetamaths@gmail.com, hgnraj@yahoo.com

(Received September 15, 2020)

Abstract: We study almost Kenmotsu manifold admitting semi-
symmetric metric connection. We proved the conditions for this
manifold to be of constant curvature. Further we verify our results by
giving an example.
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1. Introduction

A normal manifold with closed 1-form n and dg=2nA¢ called almost

Kenmotsu manifold was studied by Dileo and Pastore’. They also
investigated locally symmetric almost Kenmotsu manifolds. Wang and
Liu** Dey and Majhi5 proved some interesting theorems in almost
Kenmotsu manifolds with nullity distributions.

The notion semi-symmetric linear connection was initially studied by
Friedmann and Schouten® and the study was continued by Hayden’. Further
Yano systematically studied semi-symmetric metric connection on
Riemannian manifolds®, and the study extended to almost contact metric
manifolds by several others.

Here we study almost Kenmotsu manifold M admitting semi-symmetric

metric connectionV . We give preliminaries and basic results in section 2.

In Section 3, we obtain conditions for M with V to be of constant
curvature provided it satisfies certain semi-symmetry, Ricci-semi
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symmetry conditions with respect to Vv and flatness like curvature
conditions with respect to conformal, concircular and projective curvature
tensors. We constructed an example in section 4 to verify our results.

2. Preliminaries

Let M?™ (g, & 1, g) be an almost contact metric manifold, where ¢, &, 7
and g are respectively a (1, 1) tensor field, characteristic vector field and
a 1-form on M satisfying

(2.1) $’Z=-2+n(2)¢, n(&)=1.
From (2.1) we have rank(¢)=2n and
(22) 77'¢:O7 ¢§:O’

(2.3) a(#Y. 2)=09(Y. 2)-n(Y)n(Z).

Now, we denote by I=R(-, &)& andh=%L§¢, two symmetric (1, 1)-type

tensorson M . The tensors | and hsatisfy:

h&=0, trh=0, tr(hga)zO, hp+¢ph=0.

(2.4) Vy&=—p*X +heX,

(2.5) (Vvm)Z=g(Y,Z)=n(Y)n(Z)+9(he¥. Z),

(26) | =glp=-2(h’-¢°),

2.7) (Vxe)Y =9(pX, Y)E=n(Y)pX,

(28) R(X, ¥)& =n(X)(Y =) —n(Y)(X ~ghX)
~(Vygh)Y +(Vyph) X,

(2.9) V§h=—¢h2—g0—2h—(pl,
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(2.10) S(X, &)=-2nn(X)+g(div(gh), X),
(2.11) tr(l)=-2n+trh*=S(¢&, &),

where X,Y e TM, S is Ricci tensor, V is Levi-civita connection in M
respectively. AlsoV.p=0.

Throughout this paper the quantities with cap are with respect to semi -
symmetric metric connection VvV and the quantity without cap are with
respect to Levi-civita connectionv . The connections v and Vv are related

by’

(2.12) VY =V, Y +7(Y)X =g (X,Y)&.
Taking Y =¢& in (2.12) we have,

(2.13) V,E=—2¢0*X —phX .

Using the definition of R and (2.12), we have

(2.14) fe(v,u)zzR(v,u)Z+3[g(v,z)U—g(U,z)v]
+2n( [77 ~n(V)U]
+2[g )-g(V.Z)n(U)]é

+ ((phU z)v g(ehVv, Z)U
-g(V, Z)phU +g(U, Z)phV .

Contracting (2.14) onV , we have

(2.15) S(U,Z2)=5(U, Z)-(6n-2)g(U, 2)

+(4n—-2)n(U)n(Z)+(2n-1)g(ephU, Z).
Again contracting (2.15), we get

(2.16) f=r-2n(6n-1).
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From (2.16), we have the following:

(2.17) R(V,Z)&=2n(V)(Z-phZ)-2n(Z)(V -phV)
—(Vv(ph)Z +(Vzgoh)V .
(2.18) R(V, &)Z=2g(V,Z)-g(phV, Z)E-n(Z)

x[zv — 3¢V +hA —qo(Vgh)V]
From (2.15), we derive

(2.19) S(&,U)=—4np(U)+g(div(eh),U),

(2.20) S(& &)=-4n+tr(h*).

Definition 2.1: A Riemannian manifold M is said to be
(i) Projectively flat if the projective curvature tensor H given by

(2.21) H(v,z)u:R(v,z)u—%[s(z,u)v—s(v,u)z]

vanishes identically on M .

(if) Concircularly flat if a (0,4) tensor C(V,U,W, Z)invariant under
concircular transformation called the concircular curvature tensor® given
by

(2.22) C(X,U,W,Z)=R(X,U,W,Z)-~——

2n(2n-1)
x[9(U.W)g(X,Z)-g(X,W)g(U,Z)]

vanishes. i.e. C(V,U,W, Z)=0.
(iii) Conformally flat if the conformal curvature tensor K given by

(223) K(V,U)zZ=R(V,U)Z +m[g(u, ZWV -g(V,Z)U]
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—on g [s (U,Z)vV-S(V,Z)U+g(U,Z)QV-g(V,Z)QU ]

vanishes.

3. Results and Analysis

Throughout this section M* denote (2n+1) dimensional almost
Kenmotsu manifold admitting semi-symmetric metric connection v and
{ei 1i1=12,....2n +1} denote an orthonormal basis of the tangent space at
each point of M .

A

Lemma 3.1: If M™ is Ricci-semi-symmetric with respect to V
thentrh®=0.

Proof: Suppose inM ", (Fi(U,V)-é)(Z,W):O holds.
(3.1) S(R(U,V)W, Z)+S(W,R(V,U)Z)=0.
Using (2.14), (2.15) in (3.1), and takingU =V =&, we get

(3.2) S(R(V, &)W, £)+S(W, R(V, £)¢)=—(4n-2)
L9 (V.W)=n(V)n(W)]-(2n 1)9(¢hW R(V, €)¢)
—g(V, W) [—4n+trh2]+n [ (div(eh),V ]
+g(phV, W)[ —4n-+trh? |- (V)] g(div(eh),W)]
+[S(W.V)—(6n-2)g(W.,V)+(4n-2)n(V)n(W)
+(2n-1)g(phV, W)]-[S(W, phV)—(6n—2)
xg(W, phV)+(2n-1)g(hV, hw)].

Now, we take W = ¢ in (3.2), and simplify by using (2.8) and (2.10) to get,

trh®=0.
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Lemma3.2: If M" is
(i) Concircularlly flat with respect toV , then

r =tr(h2)+2n(2n—3).
(ii) Projectivelly flat with respect toV, then

r=(4n+1)trh®+2n(2n-3).
(i) ¢-projectively semi-symmetric with respect to Vv, then

r=2n(2n-3)+(4n+1)trh?.

Proof: Case (i): Suppose M* is concircularly flat with respect toV .
Then from (2.22), we have

(33)  g(RU V)W, X)= J )[g(u,W)g(v,x)—g(v,w)g(u,x)].

2n(2n+1
SettingV = X =&, and using (2.16), (2.22) we get,

(3.49) 29 (U, oW )+3g(phU, W)—g(h?U, W)+g(¢)(V5h)U,W)

)0

SettingU =W =e,, in (3.4) and then summing overi=12,....2n+1, we
obtain

(3.5) r=(2n +1)tr(go(V§h))—(2n +1)tr(h2)+ 2n(2n-3).

Now from (2.9), (2.11) andtr (he) =0, it follows that tr((p(véh))zmr(hz).
Substituting this in (3.5), we get

(3.6) r:tr(h2)+2n(2n—3).

Case (ii): If M~ is projectively flat, then (2.21), becomes
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(3.7) FE(U,V)Z:%[é(V,z)U—é(u,z)v]

Taking inner product with W and settingVv =W =¢, and by using (2.14)
and (2.20), we get

(3.8) S(V,Z)=(2n-2+trh*)g(V, 2)-(4n-2)n(V)n(2)

—(4n+1)g(ephVv, 2).

Setting V=Z =e; in (3.8) and summing over i fromi=12,...2n+1, we
get

(3.9) r=(4n+1)trh’ +2n(2n-3).

Case (iii): Suppose M ™ is ¢-projectively semi-symmetric with respect to
Vi.e., Hop=0. Then

(3.10) H(U, V)W —gH (U,V)W =0,

which implies

(3.11) FE(U,V)(pW—gpFE(u,v)w—z—ln[é(v,gaw)u

~S(U, W)V +S(V,W)gU ~S(U,W)gV |=0.
Taking V =¢ in (3.11) we have,
(3.12) R(U, )M~ pR(U, &)W —~[$(&, W)U

~S(U, W) £ +S (£, W)l |=0.
By using (2.14) and (2.20) and taking inner product with &, we get

(3.13) S(U, @) =(2n—2+trh*)g(U, W )+g(hU,W).
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Replacing W by ¢W in (3.13), we have

(3.14) $(U,W)=2(n-1+trh*)g(U,W)—(4n-2+trh?)

x7(U)n(W)+g(phU, W).

SettingU =W =e¢,, in (3.14), summing overi=12,.....2n+1, we get
(3.15) r=2n(2n-3)+(4n+1)trh?.

Hence lemma (3.1) follows from case (i)-(iii). Now from Lemma 3.1 and
Lemma 3.2), we state the following

Theorem 3.1: If M ™ is either concircularlly flat or projectivelly flat or
@ -projectively semi-symmetric with respect tov , then M is of constant
scalar curvature.

Theorem 3.2: The manifold M* is conformally flat (or ¢-conformally
semi- symmetric) with respect to Vv if and only iftrh? =0.

Proof: Case (i): Suppose M *is conformally flat with respect toV .
Then from (2.23), we have

1

(3.16) R(U,V)W = T

[S(V.W)U-SUW)V +g(V,W)QU

_g(U,W)QV]— r )[g(v,w)u —g(U,w)v].

2n(2n-1

Contracting (3.16) with ¢ and using (2.14), (2.15) and (2.20), we have

(3.17) S(U,W):(tr h? +1+2—Ug(u,w)—(2n +1+2—rnjn(u )(W) .

Setting U =W =g, in (3.17) taking summation over i=12,....,(2n+1) we
obtain

(3.18) trh?=0.
Conversely, from (3.17) it follows that K (U, V)W =0.
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Case (ii): Suppose M ™ is ¢-conformally semi-symmetric with respect
to V. Then K-9=0,i.e.

(3.19) K(U,V)gW —@K (U, V)W =0.

From equation (2.23) we have

(3.20) FE(U,V)(/;\N—(,)FQ(U,V)W—ﬁ[é(V,(pw)u—é(U,q)\N)v

+g(V,W)QU —g(U,W)S(V,W)gU -S(U, W)V
2n(2rn—1)

[9(V.W)g(U,pW )V —g(V,W)gU +g(U,W)gV |=0.

+9(V,W)pQU —g(U,W)pQV |+

Contraction of (3.20) with &, we get

(3.21) n(lfe(u,v)gow)—ﬁ[SA(v,(p\N)n(U)—§(U,<p\N)n(V)

I’.‘

+9(V’W)’7(QU)_g(U’W)U(QV)J+_2n(2n—1)

[a(V. W)n(U)-g(U, ) (V)]=0.
Taking V =¢ in (3.21) and using (2.16) and (2.21) we have,
(3.22) s(u,gow):(uz—rnjg(u,(pw).

Replacing W by oW in (3.22), we have

(3.23) s(u,W)=(1+2—:])g(u,w)—(1+2—:1+2n—tr hz)n(u (W) .

Putting U =W =g, in (3.23) and summation over i gives
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(3.24) trh?=0.
Conversely, from (3.23) it follows thatK - =0. Therefore the Theorem
follows from (3.18) and (3.24).

Theorem 3.3: If inM*, ¢h is of Codazzi type then M* is semi-
symmetric.

Proof: If oh is of Codazzi type, i.e.,
(3.25) 9((Vyeh)V, Z)-g((Vyeh)U, Z)=0,
then, it follows from (2.8) that
(3.26) R(U,Z)é=n(U)(Z-¢hZ)-n(Z)(U-ghU).
And (2.14) becomes

(327)  R(U,Z)V=4[g(U,V)Z-g(Z,V)U]+27(V)
[7(2)u-n(U)zZ]+2[g(Z,V)n(U)-g(U.V)n(Z)]é

+2[g(¢hz,V)U ~g(phU,V)Z]~[g(U.V)phZ ~g(Z,V)ehU ].
Consider R(U, Z)-R=0 ie.,
(3.28) (R(U,Z))R(V, Y)W =R(U, Z)R(V, Y)W -R(R(U,Z)V.Y )W
-R(V,R(U, Z)Y )W =R(V,Y)R(U, Z)W .
Taking Z=W =¢ in (3.28) we have
(3.29) (RU, ER)(V, Y)E=R(U, &)R(V, Y)E-R(R(U, &)V, Y )&
R(V,R(U, €)Y )E-R(V, Y)R(U, ¢)¢ .

Computing each of four terms of RHS of (3.29) separately and after
simplification, we get
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(3.30) R(U, &)-R=0.

Hence the proof.

Example: Let (x, y, z) are the standard coordinates inR. We consider

the 3-dimensional manifold M ={(x, Y, z)eR3}. The vector fields Elzg,

OX
We define the Riemannian metric g by,

E2=i , §:E3=xg+yi+£formabasisfor T,M ateach p in M.
oy oy oz

Oij

| 1fori=]
~|ofor i=j°

Let 7(2)=g(2,E;) for anyZe z(M). Theny(E,)=1. Let ¢ be defined
by o(E,)=E,, ¢(E,)=E;, ¢(E,)=0. We see from the definition of ¢ and
gthat ¢°Z =-Z+n(Z)E,,9(eZ,¢N)=9(ZW)-n(Z)n(W), for any vector
fields Z and W on M . Thus the structure (¢, &, 7, g) is an almost contact
structure. We also derive that| E,, E, |=E,,[E,, E;|=E,,[E,, E,|=0.
By Koszul’s formula the connection V of g is given by

2g(V,U, W) =Vg(U,W)+Ug(W,V)-wg(V,U)

~g(V.[U.W])-g(U.[v.W])+g (W, [v.U]).
By the use of the above formula, we obtain

Ve Es=E,, Vg Es=E,, V¢ E =-E;, V¢ E,=0,
Ve E;=0, V¢ E =0, V¢ E =0, V. E, =0,V E,=0.
1 .
From h= 5 L. and the above equations we see that

(3.31) hE, = hE, = hE, =0.



430 Shweta Naik and H. G. Nagaraja

Also we get V,&=—¢p’X +hpX for any Xey(M). Therefore, M is an
almost Kenmotsu manifold.

By the above results, we obtain the components of the curvature tensor
R as follows:

R(Ey E,)Es=0, R(E,, E4)Es=—E,, R(E,, E5)E;=-F,
R(E. E,)E,=—E, R(E;, E,)E,=E;, R(E, E4)E,=0,
R(E, E,)E,=E,, R(E,, E4)E, =0, R(E,, E5)E, =E,.

Now the semi-symmetric metric connection on M is given by

A A A

Ve Ey=2E,, V¢ E;=2E,, V. E =-2E,, V. E,=0,

In view of above relations M is a 3-dimensional almost Kenmotsu
manifold which admits semi-symmetric metric connection and

R(Ey E,)Es=0, R(E,, E4)E;=—2E,, R(E, E;)E;=-2E,,
R(Ey E,)E, =—4E,, R(E;, E,)E,=—2E,;, R(E,, E4)E,=0,
R(Ey E,)E, =4E,, R(E,, E;)E, =0, R(E,, E;)E, =2E,.
Making use of the above results we obtain the Ricci tensor as follows:
S(Ey E1)=9(R(Ey E;)Ep Ey )+ 9(R(Ey, Eg)Ey, By ) =-2.
Similarly we have

S(E,, E;)=S(Es, Es)=-2, S(E,, E;)=—6and S(E,, E;)=—4.
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r= S(Ei,Ei):—6andf=Z3:§(Ei,Ei)=—16.
i=1

3
i=1

Further we have from the above equations R-S =0. For instance,

(F&(El, Es)-§)(E1, E,)=0, (FE(El, Ez)-§)(El, E,)=0,

(R(Ex, El)-§)(El, E,)=0.

This is true for other components also. From equation (4.1) we get

trhzzig(thi,Ei)zo.
i=1

Thus Lemma 3.1 is verified.
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