# Almost Kenmotsu Manifold Admitting Semi-Symmetric Metric Connection 

Shweta Naik and H. G. Nagaraja<br>Department of Mathematics<br>Bangalore University, Bengaluru-560056, India.<br>Email: naikshwetamaths@ gmail.com, hgnraj@yahoo.com

(Received September 15, 2020)


#### Abstract

We study almost Kenmotsu manifold admitting semisymmetric metric connection. We proved the conditions for this manifold to be of constant curvature. Further we verify our results by giving an example.


Keywords: Almost Kenmotsu manifold, projective, concircular, semi symmetric metric connection, conformal curvature tensor.
2010 AMS Classification Number: 53D10, 53D15.

## 1. Introduction

A normal manifold with closed 1-form $\eta$ and $d \varphi=2 \eta \Lambda \varphi$ called almost Kenmotsu manifold was studied by Dileo and Pastore ${ }^{1}$. They also investigated locally symmetric almost Kenmotsu manifolds. Wang and $L^{2} u^{2-4}$ Dey and Majhi5 proved some interesting theorems in almost Kenmotsu manifolds with nullity distributions.

The notion semi-symmetric linear connection was initially studied by Friedmann and Schouten ${ }^{6}$ and the study was continued by Hayden ${ }^{7}$. Further Yano systematically studied semi-symmetric metric connection on Riemannian manifolds ${ }^{8}$, and the study extended to almost contact metric manifolds by several others.

Here we study almost Kenmotsu manifold $M$ admitting semi-symmetric metric connection $\hat{\nabla}$. We give preliminaries and basic results in section 2 . In Section 3, we obtain conditions for $M$ with $\hat{\nabla}$ to be of constant curvature provided it satisfies certain semi-symmetry, Ricci-semi
symmetry conditions with respect to $\hat{\nabla}$ and flatness like curvature conditions with respect to conformal, concircular and projective curvature tensors. We constructed an example in section 4 to verify our results.

## 2. Preliminaries

Let $M^{2 n+1}(\varphi, \xi, \eta, g)$ be an almost contact metric manifold, where $\varphi, \xi, \eta$ and $g$ are respectively a $(1,1)$ tensor field, characteristic vector field and a 1-form on $M$ satisfying

$$
\begin{equation*}
\phi^{2} Z=-Z+\eta(Z) \xi, \quad \eta(\xi)=1 . \tag{2.1}
\end{equation*}
$$

From (2.1) we have $\operatorname{rank}(\phi)=2 n$ and

$$
\begin{equation*}
\eta \cdot \phi=0, \quad \phi \xi=0, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
g(\phi Y, \phi Z)=g(Y, Z)-\eta(Y) \eta(Z) . \tag{2.3}
\end{equation*}
$$

Now, we denote by $l=R(\cdot, \xi) \xi$ and $h=\frac{1}{2} L_{\xi} \phi$, two symmetric (1, 1)-type tensors on $M$. The tensors $l$ and $h$ satisfy:

$$
h \xi=0, \quad \operatorname{tr} h=0, \operatorname{tr}(h \varphi)=0, \quad h \varphi+\varphi h=0 .
$$

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& \nabla_{X} \xi=-\varphi^{2} X+h \varphi X  \tag{2.4}\\
& \left(\nabla_{Y} \eta\right) Z=g(Y, Z)-\eta(Y) \eta(Z)+g(h \varphi Y, Z), \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
l-\varphi l \varphi=-2\left(h^{2}-\varphi^{2}\right), \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=-2 n \eta(X)+g(\operatorname{div}(\varphi h), X) \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr}(l)=-2 n+\operatorname{tr} h^{2}=S(\xi, \xi) \tag{2.11}
\end{equation*}
$$

where $X, Y \in T M, S$ is Ricci tensor, $\nabla$ is Levi-civita connection in $M$ respectively. Also $\nabla_{\xi} \varphi=0$.

Throughout this paper the quantities with cap are with respect to semi symmetric metric connection $\hat{\nabla}$ and the quantity without cap are with respect to Levi-civita connection $\nabla$. The connections $\hat{\nabla}$ and $\nabla$ are related by ${ }^{4}$

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{2.12}
\end{equation*}
$$

Taking $Y=\xi$ in (2.12) we have,

$$
\begin{equation*}
\hat{\nabla}_{X} \xi=-2 \varphi^{2} X-\varphi h X \tag{2.13}
\end{equation*}
$$

Using the definition of $R$ and (2.12), we have

$$
\begin{align*}
\hat{R}(V, U) Z= & R(V, U) Z+3[g(V, Z) U-g(U, Z) V]  \tag{2.14}\\
& +2 \eta(Z)[\eta(U) V-\eta(V) U] \\
& +2[g(U, Z) \eta(V)-g(V, Z) \eta(U)] \xi \\
& +g(\varphi h U, Z) V-g(\varphi h V, Z) U \\
& -g(V, Z) \varphi h U+g(U, Z) \varphi h V
\end{align*}
$$

Contracting (2.14) on $V$, we have

$$
\begin{align*}
& \hat{S}(U, Z)=S(U, Z)-(6 n-2) g(U, Z)  \tag{2.15}\\
& \quad+(4 n-2) \eta(U) \eta(Z)+(2 n-1) g(\varphi h U, Z)
\end{align*}
$$

Again contracting (2.15), we get

$$
\begin{equation*}
\hat{r}=r-2 n(6 n-1) \tag{2.16}
\end{equation*}
$$

From (2.16), we have the following:

$$
\begin{align*}
\hat{R}(V, Z) \xi & =2 \eta(V)(Z-\varphi h Z)-2 \eta(Z)(V-\varphi h V)  \tag{2.17}\\
& -\left(\nabla_{V} \varphi h\right) Z+\left(\nabla_{Z} \varphi h\right) V
\end{align*}
$$

$$
\begin{equation*}
\hat{R}(V, \xi) Z=2 g(V, Z)-g(\varphi h V, Z) \xi-\eta(Z) \tag{2.18}
\end{equation*}
$$

$$
\times\left[2 V-3 \varphi V+h^{2} V-\varphi\left(\nabla_{\xi} h\right) V\right]
$$

From (2.15), we derive

$$
\begin{align*}
& \hat{S}(\xi, U)=-4 n \eta(U)+g(\operatorname{div}(\varphi h), U)  \tag{2.19}\\
& \hat{S}(\xi, \xi)=-4 n+\operatorname{tr}\left(h^{2}\right) \tag{2.20}
\end{align*}
$$

Definition 2.1: A Riemannian manifold $M$ is said to be
(i) Projectively flat if the projective curvature tensor $H$ given by

$$
\begin{equation*}
H(V, Z) U=R(V, Z) U-\frac{1}{2 n}[S(Z, U) V-S(V, U) Z] \tag{2.21}
\end{equation*}
$$

vanishes identically on $M$.
(ii) Concircularly flat if a $(0,4)$ tensor $C(V, U, W, Z)$ invariant under concircular transformation called the concircular curvature tensor ${ }^{9}$ given by

$$
\begin{align*}
& C(X, U, W, Z)=R(X, U, W, Z)-\frac{r}{2 n(2 n-1)}  \tag{2.22}\\
& \quad \times[g(U, W) g(X, Z)-g(X, W) g(U, Z)]
\end{align*}
$$

vanishes. i.e. $C(V, U, W, Z)=0$.
(iii) Conformally flat if the conformal curvature tensor $K$ given by

$$
\begin{equation*}
K(V, U) Z=R(V, U) Z+\frac{r}{2 n(2 n-1)}[g(U, Z) V-g(V, Z) U] \tag{2.23}
\end{equation*}
$$

$$
-\frac{1}{2 n-1}[S(U, Z) V-S(V, Z) U+g(U, Z) Q V-g(V, Z) Q U]
$$

vanishes.

## 3. Results and Analysis

Throughout this section $M^{*}$ denote $(2 n+1)$ dimensional almost Kenmotsu manifold admitting semi-symmetric metric connection $\hat{\nabla}$ and $\left\{e_{i}: i=1,2, \ldots \ldots .2 n+1\right\}$ denote an orthonormal basis of the tangent space at each point of $M$.

Lemma 3.1: If $M^{*}$ is Ricci-semi-symmetric with respect to $\hat{\nabla}$ then $\operatorname{tr} h^{2}=0$.

Proof: Suppose in $M^{*},(\hat{R}(U, V) \cdot \hat{S})(Z, W)=0$ holds.

$$
\begin{equation*}
\hat{S}(\hat{R}(U, V) W, Z)+\hat{S}(W, \hat{R}(V, U) Z)=0 . \tag{3.1}
\end{equation*}
$$

Using (2.14), (2.15) in (3.1), and taking $U=V=\xi$, we get

$$
\begin{align*}
& S(R(V, \xi) W, \xi)+S(W, R(V, \xi) \xi)=-(4 n-2)  \tag{3.2}\\
& \times[g(V, W)-\eta(V) \eta(W)]-(2 n-1) g(\varphi h W, R(V, \xi) \xi) \\
& -g(V, W)\left[-4 n+t r h^{2}\right]+\eta(W)[g(\operatorname{div}(\varphi h), V)] \\
& +g(\varphi h V, W)\left[-4 n+t r h^{2}\right]-\eta(V)[g(\operatorname{div}(\varphi h), W)] \\
& +[S(W, V)-(6 n-2) g(W, V)+(4 n-2) \eta(V) \eta(W) \\
& +(2 n-1) g(\varphi h V, W)]-[S(W, \varphi h V)-(6 n-2) \\
& \times g(W, \varphi h V)+(2 n-1) g(h V, h W)] .
\end{align*}
$$

Now, we take $W=\xi$ in (3.2), and simplify by using (2.8) and (2.10) to get,

$$
\operatorname{tr} h^{2}=0
$$

Lemma 3.2: If $M^{*}$ is
(i) Concircularlly flat with respect to $\hat{\nabla}$, then

$$
r=\operatorname{tr}\left(h^{2}\right)+2 n(2 n-3)
$$

(ii) Projectivelly flat with respect to $\hat{\nabla}$, then

$$
r=(4 n+1) t r h^{2}+2 n(2 n-3)
$$

(iii) $\varphi$-projectively semi-symmetric with respect to $\hat{\nabla}$, then

$$
r=2 n(2 n-3)+(4 n+1) \operatorname{tr} h^{2} .
$$

Proof: Case (i): Suppose $M^{*}$ is concircularly flat with respect to $\hat{\nabla}$. Then from (2.22), we have

$$
\begin{equation*}
g(\hat{R}(U, V) W, X)=\frac{\hat{r}}{2 n(2 n+1)}[g(U, W) g(V, X)-g(V, W) g(U, X)] \tag{3.3}
\end{equation*}
$$

Setting $V=X=\xi$, and using (2.16), (2.22) we get,

$$
\begin{align*}
& -2 g(\varphi U, \varphi W)+3 g(\varphi h U, W)-g\left(h^{2} U, W\right)+g\left(\varphi\left(\nabla_{\xi} h\right) U, W\right)  \tag{3.4}\\
& =\frac{r-2 n(6 n-1)}{2 n(2 n+1)}[g(U, W)-\eta(U) \eta(W)]
\end{align*}
$$

Setting $U=W=e_{i}$, in (3.4) and then summing over $i=1,2, \ldots \ldots .2 n+1$, we obtain

$$
\begin{equation*}
r=(2 n+1) \operatorname{tr}\left(\varphi\left(\nabla_{\xi} h\right)\right)-(2 n+1) \operatorname{tr}\left(h^{2}\right)+2 n(2 n-3) \tag{3.5}
\end{equation*}
$$

Now from (2.9), (2.11) and $\operatorname{tr}(h \varphi)=0$, it follows that $\operatorname{tr}\left(\varphi\left(\nabla_{\xi} h\right)\right)=2 \operatorname{tr}\left(h^{2}\right)$. Substituting this in (3.5), we get

$$
\begin{equation*}
r=\operatorname{tr}\left(h^{2}\right)+2 n(2 n-3) \tag{3.6}
\end{equation*}
$$

Case (ii): If $M^{*}$ is projectively flat, then (2.21), becomes

$$
\begin{equation*}
\hat{R}(U, V) Z=\frac{1}{2 n}[\hat{S}(V, Z) U-\hat{S}(U, Z) V] . \tag{3.7}
\end{equation*}
$$

Taking inner product with $W$ and setting $V=W=\xi$, and by using (2.14) and (2.20), we get

$$
\begin{align*}
& S(V, Z)=\left(2 n-2+t r h^{2}\right) g(V, Z)-(4 n-2) \eta(V) \eta(Z)  \tag{3.8}\\
& \quad-(4 n+1) g(\varphi h V, Z)
\end{align*}
$$

Setting $V=Z=e_{i}$ in (3.8) and summing over $i$ from $i=1,2, \ldots \ldots .2 n+1$, we get

$$
\begin{equation*}
r=(4 n+1) t r h^{2}+2 n(2 n-3) . \tag{3.9}
\end{equation*}
$$

Case (iii): Suppose $M^{*}$ is $\varphi$-projectively semi-symmetric with respect to $\hat{\nabla}$ i.e., $\hat{H} o \varphi=0$. Then

$$
\begin{equation*}
\hat{H}(U, V) \varphi W-\varphi \hat{H}(U, V) W=0, \tag{3.10}
\end{equation*}
$$

which implies

$$
\begin{align*}
& \hat{R}(U, V) \varphi W-\varphi \hat{R}(U, V) W-\frac{1}{2 n}[\hat{S}(V, \varphi W) U  \tag{3.11}\\
& -\hat{S}(U, \varphi W) V+\hat{S}(V, W) \varphi U-\hat{S}(U, W) \varphi V]=0 .
\end{align*}
$$

Taking $V=\xi$ in (3.11) we have,

$$
\begin{align*}
& \hat{R}(U, \xi) \varphi W-\varphi \hat{R}(U, \xi) W-\frac{1}{2 n}[\hat{S}(\xi, \varphi W) U  \tag{3.12}\\
& -\hat{S}(U, \varphi W) \xi+\hat{S}(\xi, W) \varphi U]=0
\end{align*}
$$

By using (2.14) and (2.20) and taking inner product with $\xi$, we get

$$
\begin{equation*}
S(U, \varphi W)=\left(2 n-2+\operatorname{tr} h^{2}\right) g(U, \varphi W)+g(h U, W) \tag{3.13}
\end{equation*}
$$

Replacing $W$ by $\varphi W$ in (3.13), we have

$$
\begin{align*}
& S(U, W)=2\left(n-1+t r h^{2}\right) g(U, W)-\left(4 n-2+t r h^{2}\right)  \tag{3.14}\\
& \quad \times \eta(U) \eta(W)+g(\varphi h U, W) .
\end{align*}
$$

Setting $U=W=e_{i}$, in (3.14), summing over $i=1,2, \ldots \ldots .2 n+1$, we get

$$
\begin{equation*}
r=2 n(2 n-3)+(4 n+1) t r h^{2} . \tag{3.15}
\end{equation*}
$$

Hence lemma (3.1) follows from case (i)-(iii). Now from Lemma 3.1 and Lemma 3.2), we state the following

Theorem 3.1: If $M^{*}$ is either concircularlly flat or projectivelly flat or $\varphi$-projectively semi-symmetric with respect to $\hat{\nabla}$, then $M$ is of constant scalar curvature.

Theorem 3.2: The manifold $M^{*}$ is conformally flat (or $\varphi$-conformally semi- symmetric) with respect to $\hat{\nabla}$ if and only if $\operatorname{tr} h^{2}=0$.

Proof: Case (i): Suppose $M^{*}$ is conformally flat with respect to $\hat{\nabla}$. Then from (2.23), we have

$$
\begin{align*}
& \hat{R}(U, V) W=\frac{1}{2 n-1}[\hat{S}(V, W) U-\hat{S}(U, W) V+g(V, W) \hat{Q} U  \tag{3.16}\\
& -g(U, W) \hat{Q} V]-\frac{\hat{r}}{2 n(2 n-1)}[g(V, W) U-g(U, W) V]
\end{align*}
$$

Contracting (3.16) with $\xi$ and using (2.14), (2.15) and (2.20), we have

$$
\begin{equation*}
S(U, W)=\left(t r h^{2}+1+\frac{r}{2 n}\right) g(U, W)-\left(2 n+1+\frac{r}{2 n}\right) \eta(U) \eta(W) . \tag{3.17}
\end{equation*}
$$

Setting $U=W=e_{i}$ in (3.17) taking summation over $i=1,2, \ldots \ldots,(2 n+1)$ we obtain

$$
\begin{equation*}
\operatorname{tr} h^{2}=0 . \tag{3.18}
\end{equation*}
$$

Conversely, from (3.17) it follows that $\hat{K}(U, V) W=0$.

Case (ii): Suppose $M^{*}$ is $\varphi$-conformally semi-symmetric with respect to $\hat{\nabla}$. Then $\hat{K} \cdot \varphi=0$, i.e.

$$
\begin{equation*}
\hat{K}(U, V) \varphi W-\varphi \hat{K}(U, V) W=0 . \tag{3.19}
\end{equation*}
$$

From equation (2.23) we have

$$
\begin{align*}
& \hat{R}(U, V) \varphi W-\varphi \hat{R}(U, V) W-\frac{1}{2 n-1}[\hat{S}(V, \varphi W) U-\hat{S}(U, \varphi W) V  \tag{3.20}\\
& +g(V, W) \hat{Q} U-g(U, W) \hat{S}(V, W) \varphi U-\hat{S}(U, W) \varphi V \\
& +g(V, W) \varphi \hat{Q} U-g(U, W) \varphi \hat{Q} V]+\frac{\hat{r}}{2 n(2 n-1)} \\
& {[g(V, \varphi W) g(U, \varphi W) V-g(V, W) \varphi U+g(U, W) \varphi V]=0 .}
\end{align*}
$$

Contraction of (3.20) with $\xi$, we get

$$
\begin{align*}
& \eta(\hat{R}(U, V) \varphi W)-\frac{1}{2 n-1}[\hat{S}(V, \varphi W) \eta(U)-\hat{S}(U, \varphi W) \eta(V)  \tag{3.21}\\
& +g(V, W) \eta(\hat{Q} U)-g(U, W) \eta(\hat{Q} V)]+\frac{\hat{r}}{2 n(2 n-1)} \\
& {[g(V, \varphi W) \eta(U)-g(U, \varphi W) \eta(V)]=0 .}
\end{align*}
$$

Taking $V=\xi$ in (3.21) and using (2.16) and (2.21) we have,

$$
\begin{equation*}
S(U, \varphi W)=\left(1+\frac{r}{2 n}\right) g(U, \varphi W) \tag{3.22}
\end{equation*}
$$

Replacing $W$ by $\varphi W$ in (3.22), we have

$$
\begin{equation*}
S(U, W)=\left(1+\frac{r}{2 n}\right) g(U, W)-\left(1+\frac{r}{2 n}+2 n-t r h^{2}\right) \eta(U) \eta(W) . \tag{3.23}
\end{equation*}
$$

Putting $U=W=e_{i}$ in (3.23) and summation over $i$ gives

$$
\begin{equation*}
\operatorname{tr} h^{2}=0 \tag{3.24}
\end{equation*}
$$

Conversely, from (3.23) it follows that $\hat{K} \cdot \varphi=0$. Therefore the Theorem follows from (3.18) and (3.24).

Theorem 3.3: If in $M^{*}$, $\varphi$ h is of Codazzi type then $M^{*}$ is semisymmetric.

Proof: If $\varphi h$ is of Codazzi type, i.e.,

$$
\begin{equation*}
g\left(\left(\nabla_{U} \varphi h\right) V, Z\right)-g\left(\left(\nabla_{V} \varphi h\right) U, Z\right)=0 \tag{3.25}
\end{equation*}
$$

then, it follows from (2.8) that

$$
\begin{equation*}
R(U, Z) \xi=\eta(U)(Z-\varphi h Z)-\eta(Z)(U-\varphi h U) \tag{3.26}
\end{equation*}
$$

And (2.14) becomes

$$
\begin{align*}
& \hat{R}(U, Z) V=4[g(U, V) Z-g(Z, V) U]+2 \eta(V)  \tag{3.27}\\
& {[\eta(Z) U-\eta(U) Z]+2[g(Z, V) \eta(U)-g(U, V) \eta(Z)] \xi} \\
& +2[g(\varphi h Z, V) U-g(\varphi h U, V) Z]-[g(U, V) \varphi h Z-g(Z, V) \varphi h U]
\end{align*}
$$

Consider $\hat{R}(U, Z) \cdot \hat{R}=0$ i.e.,

$$
\begin{align*}
& (\hat{R}(U, Z)) \hat{R}(V, Y) W=\hat{R}(U, Z) \hat{R}(V, Y) W-\hat{R}(\hat{R}(U, Z) V, Y) W  \tag{3.28}\\
& -\hat{R}(V, \hat{R}(U, Z) Y) W-\hat{R}(V, Y) \hat{R}(U, Z) W
\end{align*}
$$

Taking $Z=W=\xi$ in (3.28) we have

$$
\begin{gather*}
(\hat{R}(U, \xi) \hat{R})(V, Y) \xi=\hat{R}(U, \xi) \hat{R}(V, Y) \xi-\hat{R}(\hat{R}(U, \xi) V, Y) \xi  \tag{3.29}\\
-\hat{R}(V, \hat{R}(U, \xi) Y) \xi-\hat{R}(V, Y) \hat{R}(U, \xi) \xi
\end{gather*}
$$

Computing each of four terms of RHS of (3.29) separately and after simplification, we get

$$
\begin{equation*}
\hat{R}(U, \xi) \cdot \hat{R}=0 \tag{3.30}
\end{equation*}
$$

Hence the proof.
Example: Let $(x, y, z)$ are the standard coordinates in $R$. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in R^{3}\right\}$. The vector fields $E_{1}=\frac{\partial}{\partial x}$, $E_{2}=\frac{\partial}{\partial y}, \xi=E_{3}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\frac{\partial}{\partial z}$ form a basis for $T_{p} M$ at each $p$ in $M$.
We define the Riemannian metric $g$ by,

$$
g_{i j}=\left\{\begin{array}{l}
1 \text { for } i=j \\
0 \text { for } i \neq j
\end{array} .\right.
$$

Let $\eta(Z)=g\left(Z, E_{3}\right)$ for any $Z \in \chi(M)$. Then $\eta\left(E_{3}\right)=1$. Let $\varphi$ be defined by $\varphi\left(E_{1}\right)=E_{2}, \varphi\left(E_{2}\right)=E_{1}, \varphi\left(E_{3}\right)=0$. We see from the definition of $\varphi$ and $g$ that $\varphi^{2} Z=-Z+\eta(Z) E_{3}, g(\varphi Z, \varphi W)=g(Z, W)-\eta(Z) \eta(W)$, for any vector fields $Z$ and $W$ on $M$. Thus the structure $(\varphi, \xi, \eta, g)$ is an almost contact structure. We also derive that $\left[E_{1}, E_{3}\right]=E_{1},\left[E_{2}, E_{3}\right]=E_{2},\left[E_{1}, E_{2}\right]=0$. By Koszul's formula the connection $\nabla$ of $g$ is given by

$$
\begin{aligned}
& 2 g\left(\nabla_{V} U, W\right)=V g(U, W)+U g(W, V)-W g(V, U) \\
& -g(V,[U, W])-g(U,[V, W])+g(W,[V, U])
\end{aligned}
$$

By the use of the above formula, we obtain

$$
\begin{aligned}
& \nabla_{E_{1}} E_{3}=E_{1}, \quad \nabla_{E_{2}} E_{3}=E_{2}, \quad \nabla_{E_{1}} E_{1}=-E_{3}, \quad \nabla_{E_{2}} E_{2}=0 \\
& \nabla_{E_{3}} E_{3}=0, \quad \nabla_{E_{2}} E_{1}=0, \quad \nabla_{E_{3}} E_{1}=0, \quad \nabla_{E_{1}} E_{2}=0, \nabla_{E_{3}} E_{2}=0
\end{aligned}
$$

From $h=\frac{1}{2} L_{\varepsilon} \varphi$ and the above equations we see that

$$
\begin{equation*}
h E_{1}=h E_{2}=h E_{3}=0 \tag{3.31}
\end{equation*}
$$

Also we get $\nabla_{X} \xi=-\varphi^{2} X+h \varphi X$ for any $X \in \chi(M)$. Therefore, $M$ is an almost Kenmotsu manifold.

By the above results, we obtain the components of the curvature tensor $R$ as follows:

$$
\begin{aligned}
& R\left(E_{1}, E_{2}\right) E_{3}=0, R\left(E_{2}, E_{3}\right) E_{3}=-E_{3}, R\left(E_{1}, E_{3}\right) E_{3}=-E_{1}, \\
& R\left(E_{1}, E_{2}\right) E_{2}=-E_{1}, R\left(E_{3}, E_{2}\right) E_{2}=E_{3}, R\left(E_{1}, E_{3}\right) E_{2}=0, \\
& R\left(E_{1}, E_{2}\right) E_{1}=E_{2}, R\left(E_{2}, E_{3}\right) E_{1}=0, R\left(E_{1}, E_{3}\right) E_{1}=E_{3} .
\end{aligned}
$$

Now the semi-symmetric metric connection on $M$ is given by

$$
\begin{aligned}
& \hat{\nabla}_{E_{1}} E_{3}=2 E_{1}, \hat{\nabla}_{E_{2}} E_{3}=2 E_{2}, \hat{\nabla}_{E_{1}} E_{1}=-2 E_{3}, \hat{\nabla}_{E_{2}} E_{2}=0, \\
& \hat{\nabla}_{E_{3}} E_{3}=0, \hat{\nabla}_{E_{2}} E_{1}=0, \hat{\nabla}_{E_{3}} E_{1}=0, \hat{\nabla}_{E_{1}} E_{2}=0, \hat{\nabla}_{E_{3}} E_{2}=0 .
\end{aligned}
$$

In view of above relations $M$ is a 3-dimensional almost Kenmotsu manifold which admits semi-symmetric metric connection and

$$
\begin{aligned}
& \hat{R}\left(E_{1}, E_{2}\right) E_{3}=0, \hat{R}\left(E_{2}, E_{3}\right) E_{3}=-2 E_{3}, \hat{R}\left(E_{1}, E_{3}\right) E_{3}=-2 E_{1}, \\
& \hat{R}\left(E_{1}, E_{2}\right) E_{2}=-4 E_{1}, \hat{R}\left(E_{3}, E_{2}\right) E_{2}=-2 E_{3}, \hat{R}\left(E_{1}, E_{3}\right) E_{2}=0, \\
& \hat{R}\left(E_{1}, E_{2}\right) E_{1}=4 E_{2}, \hat{R}\left(E_{2}, E_{3}\right) E_{1}=0, \hat{R}\left(E_{1}, E_{3}\right) E_{1}=2 E_{3} .
\end{aligned}
$$

Making use of the above results we obtain the Ricci tensor as follows:

$$
S\left(E_{1}, E_{1}\right)=g\left(R\left(E_{1}, E_{2}\right) E_{2}, E_{1}\right)+g\left(R\left(E_{1}, E_{3}\right) E_{3}, E_{1}\right)=-2 .
$$

Similarly we have

$$
S\left(E_{2}, E_{2}\right)=S\left(E_{3}, E_{3}\right)=-2, \hat{S}\left(E_{1}, E_{1}\right)=-6 \text { and } \hat{S}\left(E_{3}, E_{3}\right)=-4 .
$$

$$
r=\sum_{i=1}^{3} S\left(E_{i}, E_{i}\right)=-6 \text { and } \hat{r}=\sum_{i=1}^{3} \hat{S}\left(E_{i}, E_{i}\right)=-16
$$

Further we have from the above equations $\hat{R} \cdot \hat{S}=0$. For instance,

$$
\begin{aligned}
& \left(\hat{R}\left(E_{1}, E_{3}\right) \cdot \hat{S}\right)\left(E_{1}, E_{1}\right)=0,\left(\hat{R}\left(E_{1}, E_{2}\right) \cdot \hat{S}\right)\left(E_{1}, E_{1}\right)=0 \\
& \left(\hat{R}\left(E_{1}, E_{1}\right) \cdot \hat{S}\right)\left(E_{1}, E_{1}\right)=0
\end{aligned}
$$

This is true for other components also. From equation (4.1) we get

$$
\operatorname{tr}^{2}=\sum_{i=1}^{3} g\left(h^{2} E_{i}, E_{i}\right)=0 .
$$

Thus Lemma 3.1 is verified.

## References

1. G. Dileo and A. M. Pastore, Almost Kenmotsu Manifolds and Local Symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14(2) (2007), 343-354.
2. Y. Wang and X. Liu, On Almost Kenmotsu Manifolds Satisfying Some Nullity Distributions, Proc. Nat. Acad. Sci. India Sect. A, 86(3) (2016), 347-353.
3. Y. Wang and X. Liu, On a Type of Almost Kenmotsu Manifolds with Harmonic Curvature Tensors, Bull. Belg. Math. Soc. Simon Stevin, 22(1) (2015), 15-24.
4. Y. Wang and W. Wang, Some Results on (K, $\mu$ )-Almost Kenmotsu Manifolds, Quaestiones mathematicae, (2017), 1-13.
5. D. Dey and P. Majhi, On the Quasi-Conformal Curvature Tensor of an Almost Kenmotsu Manifold with Nullity Distributions, Facta Universitatis (NIS), SER. Math. Inform. 33(2) (2018), 255-268.
6. A. Friedmann and J. A. Schouten, Uber Die Geometrie Der Halbsymmetrischen Ubertragungen. (German) Math. Z., 21(1) (1924), 211-223.
7. H. A. Hayden, Subspaces of a Spaces with Torsion, Proc. London Math. Soc., 34 (1932), 27-50.
8. K. Yano, On Semi-Symmetric Metric Connection, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579-1586.
9. K. Yano and M. Kon, Structure on Manifolds, In: Series in Pure Mathematics: Volume 3, World Scientific, Singapore, 1984.
