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Abstract: The effects of Diffusion – thermo on MHD free convection 
flow of a Casson fluid over a vertical preamble surface with the heat 
source is investigated by introducing convective boundary condition at 
the surface where the thermal conductivity of the fluid varies linearly 
with respect to the temperature. Casson fluid model is used to 
characterize the non-Newtonian fluid behaviour. The governing partial 
differential equations are converted into non-linear ordinary differential 
equations by using similarity transformation and the expressions for the 
velocity, temperature and concentration distributions are obtained using 
perturbation technique. The behaviour of flow quantities within the 
boundary layer has been discussed and analyzed for various flow 
parameters through graphs. The influence of the Skin-friction, the local 
Nusselt number and the local Sherwood number is discussed and 
presented in tabular form. 
 

Keywords: Casson fluid, convective boundary condition, porous 
medium, radiation absorption, chemical reaction. 

 
1. Introduction 

 
The flow of non-Newtonian fluids is applied in many situations in 

industry such as processing of materials and chemical engineering. These 
fluids show different characteristics from the Newtonian fluids which 
cannot be fully represented by the Navier-Stokes equations. To represent 
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these non-Newtonian fluids some modifications to the Navier-Stokes 
equations are used and these are seen in many research works which studied 
viscoelastic and micropolar fluids1-2. These fluids are categorized as 
viscoelastic, thixotropic, and power-law fluids. The constitutive equations of 
such fluids cannot fully represent the actual behaviour of these fluids. These 
fluids include contaminated lubricants, molten metal, synovial fluids, etc. 
Many fluids used in industries show non-Newtonian behaviour, so the 
modern day researchers are more interested in those industrial non-
Newtonian fluids and their dynamics. A single constitutive equation is not 
enough to cover all properties of such non-Newtonian fluids and hence 
many non-Newtonian fluid models3-6 have been proposed to clarify all 
physical behaviours. Casson fluid is one of the types of such non-Newtonian 
fluids, which behaves like an elastic solid, and for this fluid, a yield shear 
stress exists in the constitutive equation. Casson fluid can be defined as a 
shear thinning liquid which is presumed to have an infinite viscosity at zero 
rate of shear and a yield stress under which no flow occurs and zero 
viscosity at an infinite rate of shear. Casson fluid model is used in many 
foodstuffs and biological materials, especially blood. It describes the steady 
shear stress, shear rate behaviour of blood. Merill et al.7 and Mac Donald8 
investigate the behaviour of blood. 
 

The study of magnetohydrodynamic (MHD) flow of non-Newtonian 
fluid in a porous medium has attracted the attentions of many researchers. 
Of course, it is due to the fact that such phenomenons are mostly found in 
the optimization of solidification processes of metals and metal alloys, the 
geothermal sources investigation and nuclear fuel debris treatment. 
However, non-Newtonian fluids are subtle compare to Newtonian fluids. 
Indeed, the resulting equations of non-Newtonian fluids give highly 
nonlinear differential equations which are usually difficult to solve. These 
equations add further complexities when MHD flows in a porous space have 
been taken into account. Simple applications for the MHD flows of non-
Newtonian fluids in a porous medium are encountered in irrigation 
problems, heat-storage beds, and biological systems, process of petroleum, 
textile, paper and polymer composite industries. Numerous studies have 
been presented on various aspects of MHD flows of non-Newtonian fluid 
flows passing through a porous medium. One may refer to some recent 
investigations9-13. The heat transfer aspects of the Casson fluid flow is an 
important research area due to its relevance to the optimized processing of 
chocolate, toffee and other foodstuffs14. Recently, Akbar and Khan15 studied 
the metachronal beating of cilia under the influence of Casson fluid and 
magnetic field.The unsteady MHD free flow of a Casson fluid past an 
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oscillating vertical plate with constant wall temperature. The fluid is 
electrically conducting and passing through a porous medium analyzed by 
Asma Khalid16-17. Mustafa et al.18 studied the unsteady boundary layer flow 
and heat transfer of a Casson fluid over a moving flat plate with a parallel 
free stream using the Homotopy Analysis Method. Casson fluid flow over a 
vertical porous surface with chemical reaction in the presence of magnetic 
field has been studied by Arthur19. 
 

The energy flux caused by a composition gradient is called Dufour or 
diffusion-thermal effect. Generally, the thermal-diffusion and the diffusion 
thermo effects are of smaller order of magnitude than the effects prescribed 
by Fick’s laws and are often neglected in heat and mass transfer processes 
by many researchers. Mukhopadhyay20. Hayat et al.21 investigated Soret and 
Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. In 
all of the above mentioned studies, fluid viscosity and fluid thermal 
conductivity was assumed to be constant within the boundary layer.  
Sharada22 analyzed the mixed convection flow of a Casson fluid over an 
exponentially stretching sheet with the effects of Soret and Dufour, thermal 
radiation, chemical reaction effects. 

 

Motivated by the previously mentioned investigations on flow of non-
Newtonian fluids over a vertical plate and its vast applications in many 
industries, in the present paper, the unsteady two-dimensional MHD flow of 
electrically conducting non-Newtonian Casson fluid, heat and mass transfer 
in presence of diffusion thermo and radiation absorption effects with 
convective boundary condition is investigated. 
 

2. Mathematical Formulation  
 

Consider the unsteady free convective heat and mass transfer flow of a 
laminar, viscous, electrically conducting, heat absorbing and chemically 
reactive Casson fluid past a semi infinite vertical permeable moving plate 
embedded in a uniform porous medium in the presence of thermal and 
concentration buoyancy effects. A Uniform magnetic field of strength 0B   is 
applied in the perpendicular direction towards the flow also the induced 
magnetic Reynolds number which is taken to be very small. The first order 
chemical reactions are taking place in the flow. The unsteady fluid and heat 
flows start at 0t = . 
The rheological equation an incompressible and isotropic Casson fluid, 
reported by Casson is  
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Where 0, ,τ τ µ  and α  are, respectively shear stress, Casson yield stress, 

dynamic viscosity shear rate and i j i je eπ = and ije  is the ( , )thi j  component of 
deformation on rate, cπ  is the critical value of this product, Bµ  is plastic 
dynamic viscosity of the non-Newtonian fluid, and yP  denote the yield 
stress of the fluid. Under above assumptions mode, the governing equations 
of such type of flow are given by 
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Where *u , *v  are the components of dimensional velocities along *x  and *y  
directions, respectively, *t  is the dimensional time, β  is the Casson fluid 
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parameter, *C  is the dimensional concentration, WC  and WT  are the wall 
concentration and wall temperature. C∞ and T∞  are the ambient 
concentration and temperature of the fluid. ρ  is the fluid density,ν  is the 
kinetic viscosity, pc  is the specific heat at the constant pressure, σ  is the 

electrical conductivity of the fluid, 0B  is the magnetic induction, *K  is the 
permeability of the porous medium, 0Q  is the dimensional heat absorption 
coefficient, *

lQ  is the coefficient of proportionality for the absorption of the 
radiation, D  is the mass diffusivity, g  is the gravitational acceleration , Tβ
and cβ  are the thermal and concentration expansion coefficients, 
respectively and lK  is the  first order chemical reaction coefficient. The 
approximate boundary conditions for the velocity, temperature and 
concentration fields are 
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Where *

pu  is the wall dimensional velocity, *n  is constant. It is clear from 
Eq.(2.1) that the suction velocity at the plate surface is a function of the time 
only. Assuming that it takes the following exponential form: 
 
(2.6)   ( )* **

0 1 n tV Aeϑ e= − + ,  

                
Where A  is small real positive real constant, ε and Aε  are small and less 
than unity, 0V   is scale of the suction velocity which has non-zero positive 
constant. On introducing the dimensionless quantities. 
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In the view of the above non-dimensional variables, the basic fields 
Eqs.(2.2)-(2.4) can be expressed in non-dimensional form as  
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The boundary conditions are 
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Where Gr  is the Grashof number, Gm  is the solutal Grashof number, Pr  is 
the Prandtl number, M  is the magnetic field parameter, K  is the 
permeability parameter, Kr is the chemical reaction parameter, Sc  is the 
Schmidt number, φ  is the heat source parameter and lQ  is the absorption of 
radiation parameter, 1γ is the convective parameter. 
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The mathematical statement of above problem is completed and embodies 
the solution of Eqs.(2.8)-(2.10) subject to boundary condition (2.11) 
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3. Method of Solution 
 

Eqs. (2.8) - (2.10)represents a set of partial differential equations that 
cannot be solved in enclosed form. However, it can be reduced to a set of 
ordinary differential equations in dimensionless form that can be solved 
analytically this can be done by representing the velocity, temperature and 
the concentration as 

 
( ) ( ) ( )2

0 1, ntu y t u e u y Oe e= + + , 

(3.1)   ( ) ( ) ( )2
0 1, nty t e y Oθ θ e θ e= + + ,              

( ) ( ) ( )2
0 1, ntC y t C e C y Oe e= + + , 

 
Substituting Eqs. (3.1). Into (2.8)–(2.10) equating the harmonic and non-
harmonic terms, and neglecting the higher order of ( )2O ε , and simplifying 

we obtain the following pairs of equation 0u , 0θ , 0C  and 1u , 1θ , 1C  
 

(3.2)   0 0
1 1'' '1 o o ou u M u Gr GmC

K
θ

β
   + + + + = − −  

  
    

      
(3.3)   "

0 0
'' Pr ' Pr Pr Pro o o lQ C DuCθ θ φθ+ − = − −      

                   
(3.4)   " '

0 0 0 0C ScC Sc Cγ+ − =               
 
Subject to boundary condition 
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For first order equations, and  
 

(3.6)   " ' 1
1 1 1 0 1 1

1 11 u u M n u Au Gr GmC
K

θ
β

   + + − + + = − − −  
  

 

          

(3.7)   ( )1 1 1 0 1
" ' ' "Pr Pr Pr Pr Prn A Q DuClθ θ φ θ θ+ − + = − − −   

       



 
58        G.Vinod Kumar,   R.V. M. S. S Kiran Kumar,  P.Durga Prasad and S.V. K. Varma 
 
 
 
 
 
 
 

(3.8)   ( )1 1 1 0
" " 'C ScC Sc Kr n C AScC+ − + = −       

     
With the boundary conditions 
 

(3.9)   1 1 1

1 1

0, 0, 0 on y 0
0, 0, as y

u C
C
θ

θ
= = = =
= = →∞

              

 
Without going into detail, the solution of Eqs and can be shown 
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The physical quantities of interest are the wall shear stress ωτ and the local 
surface heat transfer rate  
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The local surface heat flux is given by 
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Where κ  is the effective thermal conductivity, together with the definition 
of Nusselt number 
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The local Nusselt number is given by  
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Where 0Rex
V x
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=  is the local Reynolds number. 

The local Sherwood number is given by  
 
(3.18)   1 4 4 1 4(0) [ (1 ) ]ntSh C m e m B m Be′= − = + − +      
        

4. Results and Discussion 
 

In order to get a physical insight of the problem, the numerical 
calculations are carried out to illustrate the influence of various physical 
parameters on the velocity, temperature and concentration are presented 
graphically in Figures (2.1)-(3.1). Also, the wall Skin-friction coefficient, 
the rate of heat and mass transfer coefficients are derived and discussed 
through tables. Throughout the calculations, the parametric values are 
chosen as: 0.02, 0.5, Pr 0.71, 1, 0.5, 0.5.pA t u nε = = = = = = All the graphs 
therefore correspond to these values unless specifically indicated on the 
appropriate graph. 
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Figure 1: Velocity profiles for Dufour number Du with 

10.60, 0.5, 0.3, 0.1, 0.5, 0.2, 0.5,
2, 2, 2, 0.5
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Figure 2: Velocity profiles for Grashof number Gr with 
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Figure 3: Velocity profiles for Solutal Grashof number Gm with 

10.60, 0.5, 0.3, 0.1, 0.5, 0.5, 0.2, 2, 2, 0.5lSc Kr Q Du Gr M Kφ β γ= = = = = = = = = =  
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Figure 4: Velocity profiles for magnetic field parameter M with 

10.60, 0.5, 0.3, 0.1, 0.5, 0.5, 0.2, 2, 2, 1lSc Kr Q Du Gr Gm Kφ β γ= = = = = = = = = =  
 

 
Figure 5: Velocity profiles for permeability parameter K  with 

10.60, 0.5, 0.3, 0.1, 0.5, 0.5, 0.2, 2, 2, 0.5
 

lSc Kr Q Du Gr Gm Mφ β γ= = = = = = = = = =  

 
 
 
 
 
 
 
 
 
 

Figure 6: Velocity profiles for heat source parameter φ  with 
10.3, 0.2, 0.9, 2, 0.5, 0.2, 4, 2, 2, 0.5lSc Kr Q Du Gr Gm M Kβ γ= = = = = = = = = =  
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Figure 7:  Velocity profiles for Casson fluid parameter β  with 

10.30, 0.2, 0.3, 0.2, 0.5, 0.2, 1, 1, 0.5, 0.1
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Figure 8: Temperature profiles for different values of Dufour number Du with 

10.60, 0.1, 0.2, 0.5, 0.2lSc Kr Qφ γ= = = = =  

 
 

 
 

Figure 9: Temperature profiles for different values of radiation absorption parameter lQ
with 
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10.60, 0.1, 0.2, 0.5, 0.2Sc Kr Duφ γ= = = = =  

 
Figure 10: Temperature profiles for different values of heat source parameter φ   with 

10.60, 0.1, 0.5, 0.5, 0.2
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Figure 11: Temperature profiles for different values of convective parameter 1γ  with 

10.60, 0.1, 0.2, 0.5, 0.1
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Figure 12: Concentration profiles for different values of chemical reaction parameter Kr 

with 0.60Sc =  
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Table 1 Numerical values of wall Skin-Friction coefficient for different flow parameters. 

12, 2, 0.5, 1, 0.30,Pr 0.71, 0.5, 0.5, 0.5, 0.02
 

pGr Gm t Sc u A nγ ε= = = = = = = = = =

 
Kr 

1γ  φ  β  
lQ  Du  M  K  Cf  

0 0.3 0.2 0.4 0.3 0.3 0.5 0.1 -0.3708 
0.2 0.3 0.2 0.4 0.3 0.3 0.5 0.1 -0.4005 
0.3 0.3 0.2 0.4 0.3 0.3 0.5 0.1 -0.4047 
0.1 0.2 0.2 0.4 0.3 0.3 0.5 0.1 -0.3933 
0.1 0.4 0.2 0.4 0.3 0.3 0.5 0.1 -0.3897 
0.1 0.6 0.2 0.4 0.3 0.3 0.5 0.1 -0.3871 
0.1 0.3 0.3 0.4 0.3 0.3 0.5 0.1 -0.4333 
0.1 0.3 0.4 0.4 0.3 0.3 0.5 0.1 -0.4619 
0.1 0.3 0.5 0.4 0.3 0.3 0.5 0.1 -0.4828 
0.1 0.3 0.2 0.1 0.3 0.3 0.5 0.1 -0.2488 
0.1 0.3 0.2 0.2 0.3 0.3 0.5 0.1 -0.3144 
0.1 0.3 0.2 0.3 0.3 0.3 0.5 0.1 -0.3583 
0.1 0.3 0.2 0.4 0.5 0.3 0.5 0.1 -0.2777 
0.1 0.3 0.2 0.4 0.6 0.3 0.5 0.1 -0.2208 
0.1 0.3 0.2 0.4 0.7 0.3 0.5 0.1 -0.2208 
0.1 0.3 0.2 0.4 0.3 0.5 0.5 0.1 -0.3754 
0.1 0.3 0.2 0.4 0.3 1.0 0.5 0.1 -0.3357 
0.1 0.3 0.2 0.4 0.3 1.5 0.5 0.1 -0.2960 
0.1 0.3 0.2 0.4 0.3 0.3 1.0 0.1 -0.4227 
0.1 0.3 0.2 0.4 0.3 0.3 2.0 0.1 -0.4823 
0.1 0.3 0.2 0.4 0.3 0.3 3.0 0.1 -0.5380 
0.1 0.3 0.2 0.4 0.3 0.3 0.5 0.2 -0.3587 
0.1 0.3 0.2 0.4 0.3 0.3 0.5 0.3 -0.2391 
0.1 0.3 0.2 0.4 0.3 0.3 0.5 0.4 -0.1716 

 
 
 

Table 2 Numerical values of the rate of heat transfer coefficient for various flow 
parameters. 0.30,Pr 0.71, 0.5, 0.5, 1, 0.02Sc n A t ε= = = = = =  

 
Kr  1γ  

ϕ  lQ  
Du Nu 

0 0.3 0.2 0.3 0.3 0.2587 
0.2 0.3 0.2 0.3 0.3 0.3911 
0.3 0.3 0.2 0.3 0.3 0.4414 
0.1 0.2 0.2 0.3 0.3 0.3324 
0.1 0.4 0.2 0.3 0.3 0.3291 
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0.1 0.6 0.2 0.3 0.3 0.3265 
0.1 0.3 0.3 0.3 0.3 0.2817 
0.1 0.3 0.4 0.3 0.3 0.2497 
0.1 0.3 0.5 0.3 0.3 0.2270 
0.1 0.3 0.2 0.5 0.3 0.4700 
0.1 0.3 0.2 0.6 0.3 0.5397 
0.1 0.3 0.2 0.7 0.3 0.6094 
0.1 0.3 0.2 0.3 0.5 0.3527 
0.1 0.3 0.2 0.3 1.0 0.4078 
0.1 0.3 0.2 0.3 1.5 0.4629 

 
The effect of Dufour number (Du) on tangential velocity distribution is 

depicted in figure 1. It can be seen that as the Dufour number increase, the 
tangential velocity increases. Also, it is observed that the thickness of the 
momentum boundary layer increases with increasing values of Du. The 
velocity profiles for different values of thermal Grashof number Gr and 
solutal Grashof number Gm is shown in Figs. 2 and 3.  From these figures it 
is observed that the fluid velocity increases with increasing values of Gr and 
Gm. The flow is accelerated due to the enhancement in the buoyancy forces. 
Since the governing equations are coupled together only with the buoyancy 
parameters, the thermal and solutal Grashof numbers accelerates the fluid so 
the velocity and the boundary-layer thickness increases with the increase in 
Gr and Gm. The effect of Magnetic field parameter M is presented in Fig. 4. 
It is seen that an increasing values of M results into a decrease in the fluid 
velocity. This is due to the retarding nature of the Lorentz force which slows 
down the motion of the fluid in the boundary layer. Fig. 5 depict the 
influence of porous permeability parameter K on velocity profiles. It is 
observed that the fluid velocity decreases with an increase in the 
permeability parameter ( )K . Physically, this refers to the fact that increasing 
the tightness of the porous medium which is represented by increase in 
K  results in increasing the resistance against the flow. Also, it is seen that 
velocity reaches the maximum peak value at near the surface. Fig. 6 shows 
the velocity profiles for different values of dimensionless heat absorption 
coefficientφ , clearly as φ increase the pack value of velocity tends to 
decrease. Physically, the presence of heat absorption coefficient has the 
tendency to reduce the fluid temperature. This causes the thermal buoyancy 
effects to decrease resulting in a net reduction in the fluid velocity. 
Effects of Casson parameter β on velocity is clearly exhibited in Fig. 7. It is 
noticed that the effect of increasing values of β is to increase the velocity at 
near the surface, and hence, it reduces far away from the plate.  The Dufour 
effect on the temperature profiles are examined in Fig.8, it can be seen that 
the temperature increase with the increase in the Dufour number. Physically, 
the Dufour term that appears in the temperature equation measures the 

http://www.sciencedirect.com/science/article/pii/S2215098615000336%23fig4
http://www.sciencedirect.com/science/article/pii/S2090447913000440%23f0015
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contribution of concentration gradient to thermal energy flux in the flow 
domain. It has a vital role in the ability to increase the thermal energy in the 
boundary layer. Fig. 9 present the effect of absorption radiation parameter 

lQ on temperature profiles. From this figure it is noticed that the fluid 
temperature increases with increasing values of lQ . This is due to the fact 
that the large lQ  values correspond to an increase dominance of conduction 
over absorption radiation thereby increasing buoyancy fore and thickness of 
the thermal boundary layer. Fig. 10 represents the decrease in fluid velocity 
when the heat source parameter φ  is increased it is also observed that the 
hydromagnetic boundary layer decrease as the heat absorption effect 
increase. Fig.11 presents typical profiles for temperature distribution for 
various values of the convective parameter 1γ .  It is seen that the 
temperature of the fluid field decreases on increasing 1γ  in the boundary 
layer region and is maximum at the surface of the plate. Thus, by escalating

1γ , thermal boundary layer thickness enhances. So, we can interpret that the 
rate of heat transfer decreases with increase in convective parameter 1γ . 
Fig.12 depicts the influence of chemical reaction parameter on species 
concentration. An increase in chemical reaction parameter will suppress the 
concentration of the fluid. Higher values of Kr amount to a fall in the 
chemical molecular diffusivity, i.e., less diffusion. Therefore, they are 
obtained by species transfer. An increase in Kr will suppress species 
concentration. The concentration distribution decreases at all points of the 
flow field with the increase in the reaction parameter. 
 

The numerical value skin friction coefficient and the rate of heat transfer 
coefficient are presented in table 1 and 2. From Table 1 it is seen that skin 
friction coefficient increases with the increasing values of 1, ,lQ Duγ and K , 
but the opposite trend is observed with an increase in , ,Kr ϕ β  and M. 
Further the rate of heat transfer coefficient increases with the increasing 
values of , lKr Q and Du , while it decreases with 1γ  and 1ϕ  it is shown in 
Table 2. 
 

5. Conclusions 
 

The heat and mass transfer with diffusion thermo and radiation 
absorption effects for an unsteady hydromagnetic boundary layer flow of a 
non Newtonian Casson fluid past a vertical plate embedded in a porous 
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medium with convective boundary condition has been studied. In this study, 
the following remarks can be summarized. 
1. The momentum boundary layer thickness increases with Dufour number 

and Casson parameter. 
2. The magnitude of wall skin friction coefficient decreases with Casson 

parameter. 
3. The temperature of the fluid decreases with convective parameter 1γ . It is 

also found that the rate of heat transfer decreases with increases 1γ . 
4. Thermal boundary layer thickness with an increase in heat absorption 

parameter. 
5. Rise in distributive chemical reaction parameter ( )0Kr >   will surprise 

the concentration of the fluid. 
 

6. Limiting Case 
 

The Casson parameter β  is large enough i.e. β →∞ , the non-
Newtonian behaviours disappear and the fluid purely behaves like a 
Newtonian fluid.  

 
Appendix 
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