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Abstract: In the present study a numerical attempt is made to analyze 
the effects Hall current, Soret and Dufour in the presence of heat 
source, on unsteady flow of a chemically reacting incompressible 
viscous fluid along a semi-infinite vertical plate with viscous 
dissipation and thermal radiation. The governing non-linear differential 
equations are solved using implicit finite difference formulae, for 
which numerical simulation is carried out by coding in C-Program. The 
results obtained for Skin-friction, Nusselt and Sherwood numbers in the 
absence of Soret and Dufour parameters, show a good agreement with 
previously published data.  
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1. Introduction 

 

A special attention has been given to the unsteady free-convection flow 
of an incompressible, electrically conducting viscous fluid in the presence of 
magnetic field in connection with the theory of fluid motion in the liquid 
core of the earth, oceanographic and meteorological applications. Due to the 
gyration and drift of charged particles, the conductivity is reduced parallel to 
the electric field and the current is induced perpendicular to both electric 
and magnetic fields. This phenomenon is called as the ‘Hall current effect’. 
This effect on the fluid flow with variable concentration has a lot of 
applications in hydromagnetic power generators, general astrophysical and 
meteorological studies and it can be taken into account within the range of 
magneto hydro dynamical approximations. Sato1 has studied the effect of 
Hall current on the steady hydro magnetic flow between two parallel plates. 
Katagiri2 studied the steady incompressible boundary layer flow past a semi 
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infinite flat plate in a transverse magnetic field at small magnetic Reynolds 
number considering with the effect of Hall current. On the other hand 
Hossain3 studied the effect of Hall current on unsteady flow of 
incompressible fluid along an infinite vertical porous flat plate subjected to 
suction/injection velocity proportional to (time)-1/2.  Hossain et al.4 
investigated the effect of Hall current on the unsteady MHD free convection 
flow of an incompressible viscous fluid along a vertical porous plate 
subjected to a time dependent transpiration velocity. Agarwal5 discussed the 
effect of Hall current on the unsteady hydro magnetic free convection flow 
of viscous stratified fluid through a porous medium. The steady 
hydromagnetic free convective mass transfer flow past a vertical plate with 
Hall current, viscous dissipation and joule heating, taking in to account the 
thermal diffusion effect was studied by Singh6. The effects of heat 
Source/Sink on free-convective MHD heat transfer flow of viscous 
incompressible fluid along a vertical porous plate with hall current effect 
was analyzed by Srihari et al.7 analyzed. The effect of Hall current on 
unsteady hydromagnetic mixed convection heat and mass transfer flow past 
a vertical porous plate immersed in a porous medium was discussed and 
analyzed by Sharma and Chaudhary8.   

 

  In the above all stated studies, Soret and Dufour’s effects were 
neglected. However, in nature and technology, many transport processes can 
be found in different ways in which the heat and mass transfer occur due to 
buoyancy forces which are caused by temperature and differences. When 
heat and mass transfer occurs simultaneously in a moving fluid, the relations 
between the fluxes and the driving potentials are more intricate nature. 
Energy fluxes are generated by both temperature and concentration 
gradients. The energy flux is created by a composition gradient is called as 
Dufour effect whereas mass fluxes caused by temperature a gradients known 
as Soret effect. Such effects play an important role when density differences 
exist in the flow regime. For example, when species are introduced at a 
surface in a fluid domain, both Soret and Dufour effects are become 
influential, with a different (lower) density than the surrounding fluid. In 
heat and mass transfer problems, Soret and Dufour effects are very 
important for intermediate molecular weight gases in fluid binary systems, 
which are often encountered in high-speed aerodynamics and chemical 
process engineering. In view of these applications, ,Dursunkaya and 
Worek9, Anghel et al.10 discussed the Soret and Dufour effects on transient 
and steady natural convection flow from vertical surface. Postelnicu11 
studied the effects of a magnetic field, Soret and Dufour on heat and mass 
transfer by natural convection from vertical surfaces in porous media. 
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Sparrow et al.12 reported the effects of transpiration induced buoyancy, Soret 
and Dufour effects in a helium–air free convection boundary layer flow. 
Dursunkaya and Worek13 studied the Soret and Dufour effects on transient 
and steady natural convection flow from a vertical surface. Alam and 
Rahman14 studied the Dufour and Soret effects on steady magneto-
hydrodynamic free convective heat and mass transfer flow past a semi-
infinite vertical porous plate. Alam and Rahman15 investigated the Dufour 
and Soret effects on mixed convection flow past a vertical porous flat plate 
with variable suction. The effects of temperature dependent viscosity, Soret 
and Dufour number variations on free convective heat and mass transfer 
flow over a vertical isothermal flat plate is studied by Afify16. The influence 
of chemical reaction, Soret and Dufour effects on  natural convective heat 
and mass transfer flow from vertical surfaces in porous media was analyzed 
Postelnicu 17. Tsai and Huang 18 focused on effects of Soret and Dufour on 
Hiemenz heat and mass transfer flow through porous medium onto a 
stretching surface. The effects Soret and Dufour on natural convection flow 
past a vertical surface in a porous medium with variable surface temperature 
was investigated by Arabawy19. Soret and Dufour effects on steady 
hydromagnetic free convective boundary layer flow past a semi-infinite 
moving vertical plate embedded in a porous medium, taking viscous 
dissipation term into account was examined Reddy and Reddy20. Hydro-
magnetic mixed convection flow past a vertical plate embedded in a porous 
medium with Soret and Dufour effects was discussed by Olanrewaju et al.21, 
Makinde22 and Sharma et al.23.  
 

Due to the various applications of radiative heat transfer in the field of 
nuclear power plants, gas turbines, recently, several authors have reported 
the effect of radiation on the fluid flow by considering different flow 
conditions. Elbashbeshby and Bazid24 have reported the effect of radiation 
on forced convection flow of a micro polar fluid over a horizontal plate. 
Chamkha et al.25 analyzed the effect of radiation on free convection flow 
past a semi infinite vertical plate with mass transfer. Ganesan and 
Loganathan 26 studied the radiation and mass transfer effects on flow of a 
viscous incompressible fluid past a moving cylinder. Kim et al.27 analysed 
the effect of radiation on transient mixed convection flow of a micropolar 
fluid past a moving semi infinite vertical porous plate. Makinde28 examined 
the transient free convection interaction with thermal radiation of an 
absorbing-emitting fluid. Prasad et al.29 considered the effects radiation and 
mass transfer on two dimensional flow past an infinite vertical plate. The 
effect of thermal radiation, time-dependent suction and chemical reaction on 
the two-dimensional flow of an incompressible Boussinesq fluid, was 



28                                                       Kotagiri Srihari 
 
 
 
 
 
 
 

studied by Prakash and Ogulu30. Later, for this same study a numerical 
investigation has been carried out by Rajireddy and Srihari31. A numerical 
analysis, using Keller-box method on unsteady laminar magneto 
hydrodynamics boundary-layer flow and heat transfer of incompressible, 
viscous and electrically conducting fluid is made by Ibrahim and Shanker32. 
The flow is considered over a stretching sheet in the presence of transverse 
magnetic field with heat source/sink. Hall current in the presence of 
radiation on hydromagnetic flow of a dissipative and chemically reacting 
fluid along a semi-infinite vertical plate with heat source/sink is analysed by 
Shivaiah et al.33. Several authors 34-38 have dealt the unsteady heat transfer 
flows on different geometry and considering various flow conditions. 
Recently, steady convection flow of a viscous incompressible electrically 
conducting fluid along a semi infinite vertical plate in the presence of 
internal heat generation and a convective surface boundary condition is 
investigated by Sharma and Yadav39. 

 

In most of the previous investigations, the effects of Hall current, Soret 
and Dufour in the presence of heat source has not been considered. But it 
plays an important role in maintaining the heat transfer at desired level in 
the fields of gas turbines, Nuclear power plants, and the various propulsion 
devices for aircraft, missiles, satellites and space vehicles. Due to the 
coupled non-linearity of the problem in most of the earlier investigations, 
analytical or perturbation methods were applied to obtain the solution of the 
problem. However, in the present paper a numerical attempt has been made 
to study the effects of Hall current, Soret and Dufour in the presence of heat 
source on unsteady boundary layer flow of a chemically reacting 
incompressible viscous fluid past g a semi-infinite vertical plate with 
viscous dissipation and thermal radition. A magnetic field of uniform 
strength is applied normal to the fluid flow. In order to obtain the 
approximate solution and to describe the physics of the problem, the present 
non-linear boundary value problem is solved numerically using implicit 
finite difference formulae known as Crank-Nicholson method. The obtained 
results are discussed in detail and compared with the results of Skin-friction, 
Nusselt and Sher-wood numbers, presented by Shivaiah et al33 in the 
absence of Soret and Dufour prameters. The present study is used as a 
bridge to fill the knowledge gap among the researchers. 
 

2. Formulation of the problem 
 

An unsteady laminar, boundary layer flow of a viscous, incompressible, 
electrically conducting fluid along a semi-infinite vertical plate is 
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considered in the presence of heat source. The x′ -axis considered along the 
plate in the vertically upward direction and y′ -axis normal to it. A magnetic 
field is applied normal to the plate. Further, due to the semi-infinite plane 
surface assumption, the flow variables are functions of normal distance y′  
and t′  only. A time dependent suction velocity is assumed normal to the 
plate. The magnetic Reynolds number of the flow is taken to be small 
enough so that the induced magnetic field can be neglected.  The equation of 
conservation of electric charge givesJ ,0. =∇



yj = constant, where 

),,( zyx jjjJ =


.We further assume that the plate is non-conducting. This 
implies 0=yj at the plate and hence zero everywhere. When the strength of 
magnetic field is very large the generalized Ohm’s law, in the absence of 
electric field takes the following form 
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      Where V



 is the velocity vector, σ  is the electric conductivity, eω  is the 
electron frequency, eτ  is the electron collision time, e is the electron charge, 

en  is the number density of the electron and eP is the electron pressure. 
Under the assumption that the electron pressure (for weakly ionized gas), 
the thermo-electric pressure and ion-slip are negligible, equation (2.1) 
becomes: 
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      where u  is the x -component of V, w is the z component of V and 

)( eewm τ= is the Hall parameter.   
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Figure 2.1:  Schematic diagram of flow geometry 

 
Within the above framework, the equations which govern the flow under the 
usual Boussinesq approximation are as follows: 

 
•    Continuity 
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The radiative flux  rq  by using the Rosseland approximation [39], is given 
by 
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The boundary conditions suggested by the physics of the problem are 
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 It has been assumed that the temperature differences within the flow are 
sufficiently small and T4 may be expressed as a linear function of the 
temperature T. This is accomplished by expanding T4 in a Taylor series 
about ∞T , as follows.  Let  
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In the above expansion, neglecting the higher order terms, we have       

 
(2.11)     434 34 ∞∞ −≈ TTTT   
                                       
Using (2.11) in (2.8) and then (2.8) in (2.6), equation of energy (2.6) gives 
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Integration of continuity equation (2.3) for variable suction velocity normal 
to the plate gives 

 
      (2.13)   ( )tnAeUv ′′+−=′ e10                            
 

where A is the suction parameter and Aε  is less than unity. Here 0U  is 
mean suction velocity, which is a non-zero positive constant and the minus 
sign indicates that the suction is towards the plate.  

      In order to get the non-dimensional partial differential equations, 
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with the boundary conditions 
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    In order to establish a finite condition, 1→η  in equation (2.19) instead of 
an infinite boundary condition, ∞→y , employing the transformation 
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3. Method of solution 

 
Equations (2.20) - (2.23) are non-linear coupled, differential equations 
whose exact solution     is difficult to obtain, so they are solved numerically, 
using Crank-Nicholson method to     obtain the following system of 
equations. 
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with boundary conditions in finite difference form  
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Here η∆  and t∆  are mesh sizes along η and t (time) direction, 
respectively. Index i  refers to space and j for time. 
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Figure 3.1: Grid meshing for finite difference method 

 
 To obtain the difference equations, the region of the flow is divided into a 
grid or mesh of lines parallel to η and t  axes as shown in the figure. The 
finite-difference equations at every internal nodal point on a particular n-
level constitute a tri-diagonal system of equations. So, in the equations (3.1) 
to (3.4), taking ni )1(1=  and using the boundary conditions (3.5), the 
following tri-diagonal system of equations are obtained. 
(3.6)   ADU =      
                                                                                              
 (3.7)   HET =      
                                                                                              
 (3.8)   GFC =                                                                                    
 (3.9)               RMN =                                                                                                  
 Where D, E, F and M are the tri-diagonal matrices of order n whose 
elements are defined by 

;1, BD ii =  ;2, BE ii =     ;3, BF ii =    ;4, BM ii =   at  ni )1(1=  
;1,1 AD ii =−  ;2,1 AE ii =−   ;3,1 AF ii =−    ;4,1 AM ii =−  at ni )1(2=  
;11, AD ii =− ;21, AE ii =−   ;31, AF ii =−    ;41, AM ii =−   at ni )1(2=  

 
  and U, A, T, H, C, G are column  matrices having n components, namely  
    1+j

iu , j
iC1 , 1+j

iw , j
iC2 , ,, 3

1 j
i

j
i C+θ  j

i
j

i C4
1,+φ   i=1(1)n  respectively.                    

The above tri-diagonal system is solved by using the Thomas algorithm, for 
which a numerical simulation is carried out by coding in C-Program. In 
order to prove the convergence of present numerical scheme, the 
computation is carried out by slightly changed values of η∆ and t∆ and the 
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iterations on until a tolerance 810−  is attained. No significant change is 
observed in the values of φθ andwu ,, . Thus, it is concluded that the finite 
difference scheme is convergent and stable. From the technological point of 
view, after knowing the velocity, temperature and concentration profiles, it 
is important to know the skin-friction, rate of heat and mass transfer 
between the plate and the fluid. 
• Skin-friction 

      The Skin friction coefficient  τ  is given by 
 

      (3.10)   ( )
00

1
== ∂

∂
−=

∂
∂

=
ηη

ητ u
y
u

y

,                                                                     

               
 

• Nusselt number 

      The rate of heat transfer in terms of Nusselt number is given by 
 

      (3.11)   ( )
00

1
== ∂

∂
−=

∂
∂

=
ηη

θηθ

yy
Nu                                                                                          

 
• Sherwood number 

      The coefficient of Mass transfer which is generally known as Sherwood 
number, Sh, is given by 

 

      (3.12)   ( )
00

1
== ∂

∂
−=

∂
∂

=
ηη

φηφ

yy
Sη                                                                   

Nomenclature 
ρ - Density 
Cp - Specifi hceat at constant pressure 
v  - Kinematic viscosity 
k - Thermal conductivity 
Sc - Schmidt number 
T 
∈ 

- 
- 

Temperature 
Small reference parameter << 1 

Gr - Free convection parameter due to temperature 
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4. Results and discussion 

 
        In order to describe the physics of the problem, the numerical 
calculations for velocity, temperature, concentration, Skin-friction 
coefficient, rate of heat and mass transfer across the boundary layer for 
various values of flow parameters such as Hall parameter, Chemical 
reaction parameter, Grashof number, Modified Grashof number, Eckert 
number, Magnetic Parameter, Radiation parameter, Prandtl number, 
Schmidt number, Soret and Dufour numbers in the presence of heat source 
have been carried out. To be realistic, the values of Prandtl number (Pr) are 
chosen to be Pr = 0.71 and Pr = 7.0, which represent air and water at 
temperature 20◦C and one atmosphere pressure, respectively.  
 

        The effects of Soret (So) and Dufour (Du) on velocity field u is shown 
in the figures (1) and (2) respectively. The definition of the Soret number So 
is the effect of the temperature gradients to the inducing significant mass 
diffusion while the Dufour number defines the contribution of the 
concentration gradients to the thermal energy flux in the flow. It is observed 

Gm - Free convection parameter due to concentration 
m  - Hall parameter 
A - Suction parameter 
N - A constant exponential index 
D - Molar diffusivity 
β  - Coefficient of volumetric thermal expansion of the fluid 
∗β  - Volumetric coefficient of expansion with concentration 

Tm 
KT 

- 
- 

Mean fluid temperature 
Thermal diffusion ratio 

σ  - Electrical conductivity 
eω  - Eectron frequency 

eτ  - Eectron collision time 
ne - Number density of the electron 
Pe - Electron pressure 
So - Soret number 
Du - Dufour number 

2
rk   Rate  of  chemical reaction 

Ra   Rosseland radiation absorbtivity 
Dm 

 
 Mass diffusion coefficient 
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that the velocity of the fluid increases as the value of Soret and Dufour 
numbers increases.  
 

          Effects of the Soret and Dufour on Cross flow velocity field w is 
presented in figures (8) and (9) respectively. It is observed that the cross 
flow velocity w increases with the increasing values of So and Du. Further 
from figures (11) and (16), it is also observed that an increase in So and Du 
leads to an increase in the concentration and temperature of the fluid 
respectively. Figures (3) and (6) show the effect of Hall parameter (m) on 
velocity field’s u and w respectively, in the presence of heat source. It is 
seen from the figures that main flow velocities u increases as the value of m 
increases whereas secondary velocity w decreases on increasing value of m. 
Furthermore, it is noted that both the velocities u and w increase in the 
presence of heat source as the internal heat generation is to increase the rate 
of heat transport to the fluid. 

 

Figure (4) shows the effects of the Thermal Grashof number Gr, Solutal 
Grashof number Gm and magnetic parameter M on velocity field u while 
figure (7) reveals the effect magnetic parameter M on cross flow velocity w. 
It is observed that an increase in magnetic parameter M leads to an increase 
in the secondary velocity w. it is seen from figure (4) that an increase in Gr 
and Gm leads to an increase in the velocity u.  This is due to the fact that 
buoyancy force has the tendency to increase the velocity profile. Further, it 
is interesting to note that the increasing value of magnetic parameter is to 
reduce the velocity of the flow. This is due to the physical fact that the 
introduction of magnetic field normal to the fluid flow has a tendency to 
give rise to a resistive-type force called the Lorentz force, which acts against 
the fluid flow and hence results in reducing the velocity profile due to this 
type of magnetic pull of Lorentz force.   

The effect of heat source parameter on temperature distribution is shown 
in figure (13). It is evident that the temperature increases with the increasing 
values of heat source parameter. This result qualitatively agrees with the 
physical fact that heat generation is to increase the rate of heat transport to 
the fluid there by increasing the temperature of the fluid. Figure (12) is 
drawn for various values of Pr on temperature field in the presence of heat 
source. A comparative study of the graph reveals that increasing values of 
Prandtl number Pr, decreases the temperature of the fluid as the higher 
Pandtl number fluid has relatively lower thermal conductivity. It is a good 
agreement with physical fact that an increase in Pr leads to decrease in the 
thermal boundary layer thickness.  
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     Figures (5), (10) and (14) show effect of radiation parameter NR on 
temperature, main and secondary flow velocities respectively. It is observed 
that the temperature, main and secondary flow velocities of the fluid 
increase as the value of NR increases. This is due to the mathematical fact 
that an increase in the value of radiation parameter, RakTNR 316 3*

∞= σ , 
forgiven k  and ∞T , leads to decrease in the Roseland radiation absorbtivity 

( Ra ). But from equations (8) and (11) it is interesting to note that as Ra  
decreases the divergence of the radiation heat flux ( */ yqr ∂∂ ) increases, it 
means that the rate of radiative heat transferred to the fluid increases, 
consequently the temperature and main and secondary flow velocities of 
their particles increases. 
 

The variation of the temperature field along the coordinate η  is shown 
in figures (15) for various values of Ec. The analysis of figure (15) reveals 
that temperature of the fluid increases for increasing values of Eckert 
number (Ec). This is physically true due to the fact that increasing value of 
Ec grows the viscous dissipation heating within in the system in such way 
that temperature of the fluid increases with increase in Ec. Comparison of 
the curves in the figure (17) reveals that an increase in Ch leads decrease in 
the concentration distribution.  
 

Skin-friction coefficient, Nusselt and Sherwood numbers are presented 
in tables (1), (2) and (3) respectively, both in presence and absence of Soret 
and Dufour effects. It is observed that Skin–friction, Nusselt and Sherwood 
numbers increase in the presence of Soret and Dufour. It is also observed 
that Skin-friction increases with the increasing values of m,NR,Ec, Gr and 
Gm but, it decreases as M and Pr increases. Further, it is interesting to note 
that an increase in Ec, m and S leads to an increase in the Nusselt number 
but an increase in the Sc and Ch decreases the Sherwood number. 
 

In order to access the validity of the present numerical scheme, the 
present results are compared with previous published data33 for Skin-
friction, rate of heat and mass transfer in the absence of Soret and Dufour 
parameters. The results of the validation of the present work agree 
significantly.  

 
5. Conclusions 

 
Effects of Hall current, Soret and Dufour variations on MHD unsteady 
laminar boundary layer flow of a radiating and chemically reacting fluid 
along a semi-infinite vertical plate, by the presence of heat source with 
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viscous dissipation are analysed. From this study the following conclusions 
are drawn.  
(1) The effect of increasing values of Hall parameter m results in increasing 

both the velocity profiles u and w. 
(2) The magnetic parameter (M) reduces the main flow velocity (u) at all 

points of the flow field due to the magnetic pull of the Lorentz force. 
(3) The temperature, velocity, Skin–friction and Nusselt number increase in 

the presence heat source.  
(4) For increasing values of Soret and Dufour parameters, there is a 

considerable enhancement in main and a secondary flow velocity of the 
fluid is observed. Dufour effects greatly influence the temperature 
profile in the thermal boundary layer.   

(5) Temperature, primary and secondary velocities of the fluid flow 
increase as radiation parameter increases. This due to the fact that the 
effect of increasing values of radiation is to increase the rate of radiative 
heat transfer to the fluid.  

(6) Skin–friction, Nusselt and Sherwood numbers increase in the presence 
of Soret and Dufour effects.  

(7) The results of the validation of this work in the absence of  Soret and 
Dufour  parameter agree significantly with previous work33.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 1: Velocity field u for various values 

of So 
(Gr=5.0, Gm=5.0, m=1.0, M=1.0, S=0.5, 
Du=1.0, Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, 
Sc=0.22, A=0.3 andε =0.01) 

Figure 2: Velocity field u for various values 
of Du 

(Gr=5.0, Gm=5.0, m=1.0, M=1.0, S=0.5, 
So=1.0, Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, 

Sc=0.22, A=0.3 andε =0.01) 
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Figure 3: Velocity field u for various values 
of m in the presence of heat source (Gr=5.0, 
Gm=5.0, M=1.0, Du=1.0, Pr=0.71, Ec=0.5, 
NR=0.5, Ch=0.5, So=1.0, Sc=0.22, A=0.3 

andε =0.01) 

Figure 4: Velocity field u for different 
values of Gr, Gm and M (m=1.0, S=1.0, 

So=1.0, Du=1.0,Pr=0.71, Ec=0.5, NR=0.5, 
Ch=0.5, Sc=0.22, A=0.3 andε =0.01) 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Velocity field u for different 
values of NR in the presence of heat source 
(Gr=5.0, Gm=5.0, M=1.0, So=1.0, Du=1.0, 
Pr=0.71, Ec=0.5, S=1.0, NR=0.5, Ch=0.5, 

Sc=0.22, A=0.3 andε =0.01) 

Figure 6: Velocity field w for different 
values of m in the presence of heat source 

(Gr=5.0, Gm=5.0, M=1.0, So=1.0, Du=1.0, 
Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, 

A=0.3 andε =0.01) 
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Figure 7: Velocity field w for different 
values of M in the presence of heat source 
(Gr=5.0, Gm=5.0, m=1.0, So=1.0, Du=1.0, 

Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, 
A=0.3 andε =0.01) 

 

Figure 8: Velocity field w for different 
values of So (Gr=5.0, Gm=5.0, m=1.0, 

M=1.0, S=0.5, Du=1.0, Pr=0.71, Ec=0.5, 
NR=0.5, Ch=0.5, Sc=0.22, A=0.3 

andε =0.01) 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Velocity field w for different 
values of Du (Gr=5.0, Gm=5.0, m=1.0, 

M=1.0, S=0.5, So=1.0, Pr=0.71, Ec=0.5, 
NR=0.5, Ch=0.5, Sc=0.22, A=0.3 

andε =0.01) (Gr=5.0, Gm=5.0, m=1.0, 
M=1.0, So=1.0, Pr=0.71, Sc=0.22, A=0.3 

andε =0.01) 

Figure 10: Velocity field w for different 
values of NR (Gr=5.0, Gm=5.0, m=1.0, 
M=1.0, S=0.5, So=1.0, Pr=0.71, Ec=0.5, 

Du=1.0, Ch=0.5, Sc=0.22, A=0.3 
andε =0.01) (Gr=5.0, Gm=5.0, m=1.0, 

M=1.0, So=1.0, Pr=0.71, Sc=0.22, A=0.3 
andε =0.01) 
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Figure 11: Temperature field 𝝷𝝷 for different 
values of Du in the presence of heat source 
(Gr=5.0, Gm=5.0, m=1.0, M=1.0, So=1.0, 

Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, 
A=0.3 andε =0.01) 

Figure 12: Temperature field 𝝷𝝷 for different 
values of Pr in the presence of heat source 
(Gr=5.0, Gm=5.0, m=1.0, M=1.0, Du=1.0, 

So=1.0,  Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, 
A=0.3 andε =0.01)  (So=1.0, Du=1.0, 

Sc=0.22, A=0.3 andε =0.01) 
 
 
 
 

 
Figure 13: Temperature field 𝝷𝝷 for different values of S (Gr=5.0, Gm=5.0, m=1.0, M=1.0, 

Du=1.0, So=1.0, Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, A=0.3 andε =0.01) 
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Figure 14: Temperature field 𝝷𝝷 for different values of NR  (Gr=5.0, Gm=5.0, m=1.0, 
M=1.0, Du=1.0, So=1.0, Pr=0.71, Ec=0.5, S=0.5, Ch=0.5, Sc=0.22, A=0.3 andε =0.01) 

 
Figure 15: Temperature field 𝝷𝝷 for different values of Ec 

(Gr=5.0, Gm=5.0, m=1.0, M=1.0, Du=1.0, So=1.0, Pr=0.71, NR=0.5, S=0.5, Ch=0.5, 
Sc=0.22, A=0.3 andε =0.01) 

 

 
Figure 16: Concentration field Φ for different values of So (Gr=5.0, Gm=5.0, m=1.0, 

M=1.0, S=0.5, Du=1.0, Pr=0.71, Ec=0.5, NR=0.5, Ch=0.5, Sc=0.22, A=0.3 andε =0.01) 
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Figure 17: Concentration field Φ for different values of Ch  (Gr=5.0, Gm=5.0, m=1.0, 

M=1.0, S=0.5,So=1.0, Du=1.0, Pr=0.71, Ec=0.5, NR=0.5,  Sc=0.22, A=0.3 andε =0.01) 
 
 

Table 1  Effects of Gr, Gm, Pr, Sc, Ch, NR , M, m, S and Ec on Skin-Friction coefficient 
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     τ  
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Du=1.0 
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0.2 0.5 0.
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 1.04368 1.122814 
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Table 2  Effects of M, m, NR, Ec and S on Nusselt number (Gr=5.0, Gm=5.0, Pr=0.71, 
Sc=0.22, Ch=0.5) 

 
Table 3 Effects of Sc and Ch on Sherwood number (Gr=5.0, Gm=5.0, Pr=0.71, NR=0.5, 

M=1.0, m=0.5, S=0.5 and Ec=0.1) 
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