On a Quasi-Einstein Kähler Manifold and its Application to General Relativity

Vibha Srivastava and P. N. Pandey
Department of Mathematics
University of Allahabad, Allahabad-211002
Email: vibha.one22@rediffmail.com, pnpiaps@gmail.com

(Received January 16, 2018)

Abstract

In the present paper, a quasi-Einstein Kähler manifold is studied. Certain results related to pseudo-projective curvature tensor and M projective curvature tensor of a quasi-Einstein Kähler manifold $(Q E K)_{4}$ have been studied. A $(Q E K)_{4}$ spacetime with space-matter tensor is also studied and a result on $(Q E K)_{4}$ spacetime is obtained.

Keywords: Quasi-Einstein Kähler manifold, pseudo-projective curvature tensor, energy momentum tensor, Einstein's fields equation, space-matter tensor.

2010 Mathematics Subject Classification: 53C25, 53C50.

1. Introduction

In 2000, Chaki and Maity ${ }^{1}$ introduced the notion of an n-dimensional Quasi-Einstein manifold and denoted it by $(Q E)_{n}$. The study of quasiEinstein manifolds was further enriched by Chaki ${ }^{2}$, Guha ${ }^{3}$, De and Ghosh ${ }^{4,5}$, Debnath and Konar ${ }^{6}$, Bejan ${ }^{7}$ and many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasiumbilical hypersurfaces of semi-Euclidean spaces. For instance, the Robertson-Walker spacetime is a quasi-Einstein manifold. Also, in general relativity ${ }^{8}$, a general quasi-Einstein manifold can be taken as a model of the perfect fluid spacetime. So quasi-Einstein manifolds have some importance in the general theory of relativity.

In this paper, we study quasi-Einstein Kähler manifolds. The paper is organized as follows: Section 1 is introductory. In Section 2, some
geometric properties of quasi-Einstein Kähler manifolds have been studied. Section 3 is devoted to obtain a certain result on quasi-Einstein Kähler manifold in the case of pseudo-projective curvature tensor and in Section 4 in the case of M-projective curvature tensor. In Section 5, we discuss $(Q E K)_{4}$ spacetime with space-matter tensor and obtain some results on $(Q E K)_{4}$ spacetime.

2. Preliminaries

Let $\left(M_{2 n}, g\right)$ be a $2 n$-dimensional Kähler manifold with respect to the Levi-Civita connection ∇, then we have

$$
\begin{align*}
& \overline{\bar{X}}+X=0 \text { and } \bar{X}=F X, \tag{2.1}\\
& \left(\nabla_{X} F\right)=0 \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
g(\bar{X}, \bar{Y})=g(X, Y) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
g(\bar{X}, Y)+g(X, \bar{Y})=0 \tag{2.4}
\end{equation*}
$$

where X and Y are arbitrary vector fields. The curvature tensor R on the Kähler manifold is defined as

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \tag{2.5}
\end{equation*}
$$

and it satisfies

$$
\begin{align*}
\tilde{R}(\bar{X}, \bar{Y}, \bar{Z}, \bar{W}) & =\tilde{R}(X, Y, Z, W)=\tilde{R}(X, Y, \bar{Z}, \bar{W}) \tag{2.6}\\
& =\tilde{R}(\bar{X}, \bar{Y}, Z, W) .
\end{align*}
$$

The Ricci tensor satisfies

$$
\begin{equation*}
S(\bar{X}, \bar{Y})=S(X, Y) \tag{2.7}
\end{equation*}
$$

The pseudo-projective curvature tensor P is defined as

$$
\begin{align*}
P(X, Y) Z= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \tag{2.8}\\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, Z) X-g(X, Z) Y],
\end{align*}
$$ while M-projective curvature tensor denoted by W, is defined as

$$
\begin{align*}
W(X, Y) Z= & R(X, Y) Z-\frac{1}{2(n-1)}[S(Y, Z) X-S(X, Z) Y \tag{2.9}\\
& +g(Y, Z) Q X-g(X, Z) Q Y] .
\end{align*}
$$

A non-flat Riemannian or a semi-Riemannian manifold $\left(M_{n}, g\right)$ is called a quasi-Einstein manifold ${ }^{1}$ if its Ricci tensor S is non-vanishing and satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y), \tag{2.10}
\end{equation*}
$$

or equivalently, its Ricci operator Q satisfies

$$
\begin{equation*}
Q X=a X+b A(X) U, \tag{2.11}
\end{equation*}
$$

where a and b are scalars, $b \neq 0$ and A is a non-zero 1 -form such that

$$
\begin{equation*}
g(X, U)=A(X), \tag{2.12}
\end{equation*}
$$

for all vector fields X and a unit vector field U. Contracting X and Y in equation (2.10), we get

$$
\begin{equation*}
r=n a+b . \tag{2.13}
\end{equation*}
$$

In 1972, Chen and Yano ${ }^{9}$ introduced the notion of a manifold of quasiconstant curvature. A non-flat Riemannian or a semi-Riemannian manifold is said to be a manifold of quasi-constant curvature if its curvature tensor R of type $(0,4)$ satisfies the condition

$$
\begin{align*}
R(X, Y, Z, W)= & a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{2.14}\\
& +b[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W) \\
& +g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)],
\end{align*}
$$

where a and b are scalars of which $b \neq 0$ and A is a non-zero 1-form, such that $g(X, U)=A(X)$, for all vector fields X and a unit vector field U. Scalars a and b appears in (2.14), are called the associated scalars. A is called associated 1 -form and U is called generator of the manifold. Such an n-dimensional manifold is denoted by $(Q C)_{n}$.

3. Pseudo-Projective Curvature Tensor

Theorem 3.1: On Quasi-Einstein Kähler manifold $(Q E K)_{n}$,the following conditions are equivalent for pseudo-projective curvature tensor:

$$
\begin{equation*}
P^{*}(\bar{Y}, \bar{Z})=P^{*}(Y, Z) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A(\bar{Y}) A(Z)+A(Y) A(\bar{Z})=0 \tag{3.2}
\end{equation*}
$$

provided $(n-2) a+(n-1) b \neq 0$.
Proof: From equation (2.8), the pseudo-projective curvature tensor of type $(0,4)$ may be written as

$$
\begin{align*}
P(X, Y, Z, W)= & a R(X, Y, Z, W)+b[S(Y, Z) g(X, W) \tag{3.3}\\
& -S(X, Z) g(Y, W)]-\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, Z) g(X, W) \\
& -g(X, Z) g(Y, W)] .
\end{align*}
$$

Using equations (2.10), (2.13) and (2.14) in equation (3.3), we get

$$
\begin{align*}
P(X, Y, Z, W)= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, Z) g(X, W) \tag{3.4}\\
& -g(X, Z) g(Y, W)]+b(a+b)[A(Y) A(Z) g(X, W) \\
& -A(X) A(Z) g(Y, W)]+a b[g(Y, Z) A(X) A(W) \\
& -g(X, Z) A(Y) A(W)] .
\end{align*}
$$

Contracting equation (3.4) over X and W, we get

$$
\begin{align*}
P^{*}(Y, Z)=\{ & \left.a^{2}(n-1)+a b n-\frac{a n+b}{n}(a-b+b n)\right\} g(Y, Z) \tag{3.5}\\
& +\left\{a b(n-2)+b^{2}(n-1)\right\} A(Y) A(Z)
\end{align*}
$$

Replacing Y and Z and by \bar{Y} and \bar{Z}, and using (2.3) we have

$$
\begin{align*}
P^{*}(\bar{Y}, \bar{Z})= & \left\{a^{2}(n-1)+a b n-\frac{a n+b}{n}(a-b+b n)\right\} g(Y, Z) \tag{3.6}\\
& +\left\{a b(n-2)+b^{2}(n-1)\right\} A(\bar{Y}) A(\bar{Z})
\end{align*}
$$

From equations (3.5) and (3.6), we see that (3.1) holds if and only if

$$
\begin{equation*}
A(\bar{Y}) A(\bar{Z})=A(Y) A(Z), \tag{3.7}
\end{equation*}
$$

provided $(n-2) a+(n-1) b \neq 0$. Replacing Z by \bar{Z} and using (2.1) we get (3.2). Also replacing Z by \bar{Z} in (3.2), we get (3.7). Thus (3.2) and (3.7) are equivalent.

Theorem 3.2: On Quasi-Einstein Kähler manifold $(Q E K)_{n}$, pseudoprojective curvature tensor satisfies

$$
\begin{equation*}
P(\bar{X}, \bar{Y}) \bar{Z}=P(\bar{X}, Y) Z+P(X, \bar{Y}) Z+P(X, Y) \bar{Z} \tag{3.8}
\end{equation*}
$$

if

$$
\begin{align*}
A(\bar{Y}) A(\bar{Z}) \bar{X}= & A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X \tag{3.9}\\
& +A(Y) A(\bar{Z}) X .
\end{align*}
$$

Proof: From equation (3.4), we have

$$
\begin{align*}
P(X, Y) Z= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, Z) X \tag{3.10}\\
& -g(X, Z) Y]+b(a+b)[A(Y) A(Z) X-A(X) A(Z) Y] \\
& +a b[g(Y, Z) A(X) U-g(X, Z) A(Y) U] .
\end{align*}
$$

Replacing X, Y, Z by $\bar{X}, \bar{Y}, \bar{Z}$ in equation (3.10), we get

$$
\begin{align*}
P(\bar{X}, \bar{Y}) \bar{Z}= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(\bar{Y}, \bar{Z}) \bar{X} \tag{3.11}\\
& -g(\bar{X}, \bar{Z}) \bar{Y}]+b(a+b)[A(\bar{Y}) A(\bar{Z}) \bar{X}-A(\bar{X}) A(\bar{Z}) \bar{Y}] \\
& +a b[g(\bar{Y}, \bar{Z}) A(\bar{X}) U-g(\bar{X}, \bar{Z}) A(\bar{Y}) U]
\end{align*}
$$

Using equation (2.3), equation (3.11) may be written as

$$
\begin{align*}
P(\bar{X}, \bar{Y}) \bar{Z} & =\left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, Z) \bar{X} \tag{3.12}\\
& -g(X, Z) \bar{Y}]+b(a+b)[A(\bar{Y}) A(\bar{Z}) \bar{X}-A(\bar{X}) A(\bar{Z}) \bar{Y}] \\
& +a b[g(Y, Z) A(\bar{X}) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Replacing X by \bar{X} in equation (3.10), we get

$$
\begin{align*}
P(\bar{X}, Y) Z= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, Z) \bar{X} \tag{3.13}\\
& -g(\bar{X}, Z) Y]+b(a+b)[A(Y) A(Z) \bar{X}-A(\bar{X}) A(Z) Y] \\
& +a b[g(Y, Z) A(\bar{X}) U-g(\bar{X}, Z) A(Y) U] .
\end{align*}
$$

Replacing Y by \bar{Y} in equation (3.10), we get

$$
\begin{align*}
P(X, \bar{Y}) Z= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(\bar{Y}, Z) X \tag{3.14}\\
& -g(X, Z) \bar{Y}]+b(a+b)[A(\bar{Y}) A(Z) X-A(X) A(Z) \bar{Y}] \\
& +a b[g(\bar{Y}, Z) A(X) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Replacing Z by \bar{Z} in equation (3.10), we get

$$
\begin{align*}
P(X, Y) \bar{Z}= & \left\{a^{2}+a b-\frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, \bar{Z}) X \tag{3.15}\\
& -g(X, \bar{Z}) Y]+b(a+b)[A(Y) A(\bar{Z}) X-A(X) A(\bar{Z}) Y] \\
& +a b[g(Y, \bar{Z}) A(X) U-g(X, \bar{Z}) A(Y) U] .
\end{align*}
$$

Adding (3.13), (3.14), (3.15), we get

$$
\begin{align*}
& P(\bar{X}, Y) Z+P(X, \bar{Y}) Z+P(X, Y) \bar{Z}=\left\{a^{2}+a b-\right. \tag{3.16}\\
& \left.\quad \frac{a n+b}{n}\left(\frac{a}{(n-1)}+b\right)\right\}[g(Y, Z) \bar{X}-g(X, Z) \bar{Y}] \\
& \quad+b(a+b)[A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X+A(Y) A(\bar{Z}) X \\
& \quad-A(\bar{X}) A(Z) Y-A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y] \\
& \quad+a b[g(Y, Z) A(\bar{X}) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Using equation (3.12) in (3.16) we get
(3.17) $P(\bar{X}, Y) Z+P(X, \bar{Y}) Z+P(X, Y) \bar{Z}=P(\bar{X}, \bar{Y}) \bar{Z}+b(a+b)[A(\bar{X}) A(\bar{Z}) \bar{Y}$

$$
\begin{aligned}
& -A(\bar{Y}) A(\bar{Z}) \bar{X}+A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X+A(Y) A(\bar{Z}) X \\
& -A(\bar{X}) A(Z) Y-A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y]
\end{aligned}
$$

Suppose (3.9) holds. Interchanging X and Y in (3.9), we get

$$
\begin{equation*}
A(\bar{X}) A(\bar{Z}) \bar{Y}=A(Y) A(Z) \bar{X}+A(\bar{X}) A(Z) Y+A(X) A(\bar{Z}) Y \tag{3.18}
\end{equation*}
$$

Subtracting (3.18) from (3.9), we get

$$
\begin{align*}
A(\bar{X}) A(\bar{Z}) \bar{Y}-A(\bar{Y}) A(\bar{Z}) \bar{X}= & A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X \tag{3.19}\\
& +A(Y) A(\bar{Z}) X-A(\bar{X}) A(Z) Y \\
& -A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y
\end{align*}
$$

Using (3.19) in (3.17), we get (3.8).

4. \quad - Projective Curvature Tensor

Theorem 4.1: On Quasi-Einstein Kähler manifold $(Q E K)_{n}$,the following conditions are equivalent for M-projective curvature tensor

$$
\begin{equation*}
W^{*}(\bar{Y}, \bar{Z})=W^{*}(Y, Z) . \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A(\bar{Y}) A(\bar{Z})=A(Y) A(Z) \tag{4.2}
\end{equation*}
$$

for $n>2$.
Proof: From equation (2.9), the M - projective curvature tensor of type $(0,4)$ may be written as

$$
\begin{align*}
& W(X, Y, Z, W)=R(X, Y, Z, W)-\frac{1}{2(n-1)}[S(Y, Z) g(X, W) \tag{4.3}\\
& \quad-S(X, Z) g(Y, W)+g(Y, Z) g(Q X, W)-g(X, Z) g(Q Y, W)] .
\end{align*}
$$

Using equations (2.10), (2.11) and (2.14) in equation (4.3), we get

$$
\begin{align*}
& W(X, Y, Z, W)=\left\{a-\frac{a}{(n-1)}\right\}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{4.4}\\
& \quad+\left\{b-\frac{b}{2(n-1)}\right\}[A(Y) A(Z) g(X, W)-A(X) A(Z) g(Y, W)] \\
& \quad+\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)] .
\end{align*}
$$

Contracting equation (4.4) over X and W, we get

$$
\begin{align*}
W^{*}(Y, Z)= & \left\{\frac{2 a n^{2}-2 n(3 a-b)+4 a-3 b}{2(n-1)}\right\} g(Y, Z) \tag{4.5}\\
& +\left\{\frac{2 n^{2} b-7 n b+6 b}{2(n-1)}\right\} A(Y) A(Z) .
\end{align*}
$$

Replacing Y and Z and by \bar{Y} and \bar{Z}, and using (2.3), we have
(4.6) $W^{*}(\bar{Y}, \bar{Z})=\left\{\frac{2 a n^{2}-2 n(3 a-b)+4 a-3 b}{2(n-1)}\right\} g(Y, Z)$

$$
+\left\{\frac{2 n^{2} b-7 n b+6 b}{2(n-1)}\right\} A(\bar{Y}) A(\bar{Z}) .
$$

From equations (4.5) and (4.6), we have

$$
\begin{equation*}
W^{*}(\bar{Y}, \bar{Z})=W^{*}(Y, Z)+\left\{\frac{(2 n-3)(n-2)}{2(n-1)}\right\} b[A(\bar{Y}) A(\bar{Z})-A(Y) A(Z)] . \tag{4.7}
\end{equation*}
$$

This shows that (4.1) holds if and only if (4.2) holds for $n>2$.
Theorem 4.2: On Quasi-Einstein Kähler manifold (QEK) $)_{n}, M$ projective curvature tensor satisfies

$$
\begin{equation*}
W(\bar{X}, \bar{Y}) \bar{Z}=W(\bar{X}, Y) Z+W(X, \bar{Y}) Z+W(X, Y) \bar{Z} \tag{4.8}
\end{equation*}
$$

if

$$
\begin{equation*}
A(\bar{Y}) A(\bar{Z}) \bar{X}=A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X+A(Y) A(\bar{Z}) X . \tag{4.9}
\end{equation*}
$$

Proof: From equation (4.4), we get

$$
\begin{align*}
W(X, Y) Z= & \left\{a-\frac{a}{(n-1)}\right\}[g(Y, Z) X-g(X, Z) Y] \tag{4.10}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(Y) A(Z) X-A(X) A(Z) Y] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, Z) A(X) U-g(X, Z) A(Y) U] .
\end{align*}
$$ Replacing X, Y, Z by $\bar{X}, \bar{Y}, \bar{Z}$ in equation (4.10), we get

$$
\begin{align*}
W(\bar{X}, \bar{Y}) \bar{Z}= & \left\{a-\frac{a}{(n-1)}\right\}[g(\bar{Y}, \bar{Z}) \bar{X}-g(\bar{X}, \bar{Z}) \bar{Y}] \tag{4.11}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(\bar{Y}) A(\bar{Z}) \bar{X}-A(\bar{X}) A(\bar{Z}) \bar{Y}] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(\bar{Y}, \bar{Z}) A(\bar{X}) U-g(\bar{X}, \bar{Z}) A(\bar{Y}) U] .
\end{align*}
$$

Using (2.3) in (4.11), we get

$$
\begin{align*}
W(\bar{X}, \bar{Y}) \bar{Z}= & \left\{a-\frac{a}{(n-1)}\right\}[g(Y, Z) \bar{X}-g(X, Z) \bar{Y}] \tag{4.12}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(\bar{Y}) A(\bar{Z}) \bar{X}-A(\bar{X}) A(\bar{Z}) \bar{Y}] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, Z) A(\bar{X}) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Replacing X by \bar{X} in equation (4.10), we get

$$
\begin{align*}
W(\bar{X}, Y) Z= & \left\{a-\frac{a}{(n-1)}\right\}[g(Y, Z) \bar{X}-g(\bar{X}, Z) Y] \tag{4.13}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(Y) A(Z) \bar{X}-A(\bar{X}) A(Z) Y] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, Z) A(\bar{X}) U-g(\bar{X}, Z) A(Y) U] .
\end{align*}
$$

Replacing Y by \bar{Y} in equation (4.10), we get

$$
\begin{align*}
W(X, \bar{Y}) Z= & \left\{a-\frac{a}{(n-1)}\right\}[g(\bar{Y}, Z) X-g(X, Z) \bar{Y}] \tag{4.14}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(\bar{Y}) A(Z) X-A(X) A(Z) \bar{Y}] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(\bar{Y}, Z) A(X) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Replacing Z by \bar{Z} in equation (4.10), we get

$$
\begin{align*}
W(X, Y) \bar{Z}= & \left\{a-\frac{a}{(n-1)}\right\}[g(Y, \bar{Z}) X-g(X, \bar{Z}) Y] \tag{4.15}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(Y) A(\bar{Z}) X-A(X) A(\bar{Z}) Y] \\
& +\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, \bar{Z}) A(X) U-g(X, \bar{Z}) A(Y) U] .
\end{align*}
$$

Adding (4.13), (4.14), (4.15), we get

$$
\begin{align*}
& W(\bar{X}, Y) Z+W(X, \bar{Y}) Z+W(X, Y) \bar{Z}=\left\{a-\frac{a}{(n-1)}\right\}[g(Y, Z) \bar{X} \tag{4.16}\\
& \quad-g(X, Z) \bar{Y}]+\left\{b-\frac{b}{2(n-1)}\right\}[A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X \\
& \quad+A(Y) A(\bar{Z}) X-A(\bar{X}) A(Z) Y-A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y] \\
& \quad+\left\{b-\frac{b}{2(n-1)}\right\}[g(Y, Z) A(\bar{X}) U-g(X, Z) A(\bar{Y}) U] .
\end{align*}
$$

Using equation (4.12) in (4.16), we get

$$
\begin{align*}
P(\bar{X}, Y) Z+P(X, \bar{Y}) & Z+P(X, Y) \bar{Z}=P(\bar{X}, \bar{Y}) \bar{Z} \tag{4.17}\\
& +\left\{b-\frac{b}{2(n-1)}\right\}[A(\bar{X}) A(\bar{Z}) \bar{Y}-A(\bar{Y}) A(\bar{Z}) \bar{X} \\
& +A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X+A(Y) A(\bar{Z}) X \\
& -A(\bar{X}) A(Z) Y-A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y] .
\end{align*}
$$

Suppose (4.9) holds. Interchanging X and Y in (4.9), we get

$$
\begin{equation*}
A(\bar{X}) A(\bar{Z}) \bar{Y}=A(Y) A(Z) \bar{X}+A(\bar{X}) A(Z) Y+A(X) A(\bar{Z}) Y . \tag{4.18}
\end{equation*}
$$

Subtracting (4.18) from (4.9), we get

$$
\begin{align*}
& A(\bar{X}) A(\bar{Z}) \bar{Y}-A(\bar{Y}) A(\bar{Z}) \bar{X}=A(Y) A(Z) \bar{X}+A(\bar{Y}) A(Z) X \tag{4.19}\\
& \quad+A(Y) A(\bar{Z}) X-A(\bar{X}) A(Z) Y-A(X) A(Z) \bar{Y}-A(X) A(\bar{Z}) Y
\end{align*}
$$ Using (4.19) in (4.17), we get (4.8).

5. (QEK) $)_{4}$ Spacetime

In this section we study space matter-tensor of $(Q E K)_{4}$ spacetime. In a smooth manifold Petrov ${ }^{10}$ defined a tensor \tilde{P} of type $(0,4)$ as

$$
\begin{equation*}
\tilde{P}=R+\frac{k}{2} g \wedge T-\sigma G, \tag{5.1}
\end{equation*}
$$

where R is the curvature tensor of type $(0,4), T$ is the energy momentum tensor of type $(0,2), k$ is the gravitational constant, σ is the energy density and G is a tensor of type $(0,4)$ given by

$$
\begin{equation*}
G(X, Y, Z, W)=g(Y, Z) g(X, W)-g(X, Z) g(Y, W), \tag{5.2}
\end{equation*}
$$

for all $X, Y, Z, W \in T M$. Kulkarni-Nomizu product $g \wedge T$ is given by

$$
\begin{align*}
(g \wedge T)(X, Y, Z, W)= & g(Y, Z) T(X, W)+g(X, W) T(Y, Z) \tag{5.3}\\
& -g(X, Z) T(Y, W)-g(Y, W) T(X, Z),
\end{align*}
$$

where $X, Y, Z, W \in T M$. The tensor \tilde{P} is known as the space-matter tensor of type $(0,4)$ of the manifold M. The space-matter tensor has been studied by
Ahasan and Siddiqui ${ }^{11,12}$ and many others.
Theorem 5.1: The space-matter tensor in a Quasi-Einstein Kähler spacetime $(\text { QEK })_{4}$ obeying Einstein field equation satisfies

$$
\begin{equation*}
\tilde{P}^{*}(\bar{Y}, \bar{Z})=\tilde{P}^{*}(Y, Z) \tag{5.4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
A(\bar{Y}) A(\bar{Z})=A(Y) A(Z) \tag{5.5}
\end{equation*}
$$

for $b \neq 0$.
Proof: Equation (5.1) can also be written as

$$
\begin{align*}
\tilde{P}(X, Y, Z, W) & =R(X, Y, Z, W)+\frac{k}{2}[g(Y, Z) T(X, W) \tag{5.6}\\
+ & g(X, W) T(Y, Z)-g(X, Z) T(Y, W)-g(Y, W) T(X, Z)] \\
- & \sigma[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] .
\end{align*}
$$

The Einstein's field equation without cosmological constant is given by

$$
\begin{equation*}
S(X, Y)-\frac{r}{2} g(X, Y)=k T(X, Y), \tag{5.7}
\end{equation*}
$$

where k is the gravitational constant and r is the scalar curvature of the spacetime.

Using equations (2.10), (2.14) and (5.7) in equation (5.6), we get

$$
\begin{align*}
\tilde{P}(X, Y, Z, W) & =\left\{a+\sigma+\frac{a(2-n)+b}{2}\right\}[g(Y, Z) g(X, W) \tag{5.8}\\
& -g(X, Z) g(Y, W)]+\frac{3 b}{2}[A(Y) A(Z) g(X, W) \\
& -A(X) A(Z) g(Y, W)]+\frac{b}{2}[g(Y, Z) A(X) A(W) \\
& -g(X, Z) A(Y) A(W)] .
\end{align*}
$$

Contracting equation (5.8) over X and W, we get

$$
\begin{equation*}
\tilde{P}^{*}(Y, Z)=\left\{\frac{12 a+6 \sigma-3 a n+4 b}{2}\right\} g(Y, Z)+4 b A(Y) A(Z) . \tag{5.9}
\end{equation*}
$$

Replacing Y and Z and by \bar{Y} and \bar{Z} in (5.9), we have

$$
\begin{equation*}
\tilde{P}^{*}(\bar{Y}, \bar{Z})=\left\{\frac{12 a+6 \sigma-3 a n+4 b}{2}\right\} g(Y, Z)+4 b A(\bar{Y}) A(\bar{Z}), \tag{5.10}
\end{equation*}
$$

for $g(\bar{Y}, \bar{Z})=g(Y, Z)$. From equations (5.9) and (5.10), we see that (5.4) holds if and only if (5.5) holds for $b \neq 0$.

Acknowledgement

The first author is thankful to UGC, Government of India for providing the UGC- Dr. D.S. Kothari Post-Doctoral Fellowship.

References

1. M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000) 297-306.
2. M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58 (2001) 683-691.
3. S. Guha, On a perfect fluid spacetime admitting quasi-conformal curvature tensor, Facta Universitatis, 3(2003) 843-849.
4. U. C. De and B. K. De, On quasi-Einstein manifolds, Commun. Korean Math. Soc., 23 (2008) 413-420.
5. U. C. De and G. C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar., 48 (2004) 223-231.
6. P. Debnath and A. Konar, On super quasi-Einstein manifolds, Publ. Inst. Math., 89(103) (2011) 95-104.
7. C. L. Bejan, Characterization of quasi-Einstein manifolds, Analele. Stiint. Univ. Al. I. Cuza Iasi. Mat. (S.N.), 53 (2007) 67-72.
8. U. C. De and G. C. Ghosh, On quasi-Einstein and special quasi Einstein manifolds, Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178-191.
9. B. Chen and K. Yano, Hypersurfaces of conformally flat space, Tensor N. S., 26 (1972) 315-321.
10. A. Z. Petrov, Einstein spaces, Pergamon Press, Oxford 1949.
11. Z. Ahsan, A symmetry property of the spacetime of general relativity in terms of the space-matter tensor, Brazilian J. Phys., 26 (1996) 572-576.
12. Z. Ahsan and S. A. Siddiqui, On the divergence of the space-matter tensor in general relativity, Adv. Stud. Theor. Phys., 4 (2010) 543-556.
