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Abstract: Once the solutions are obtained, sophisticated conditions are 

needed to prove their uniqueness, particularly in the Dimension 

Generalization spaces. To prove the uniqueness of the final solutions, 

this work first establishes the equivalence of Cauchy sequences that 

encapsulate the presence of the solution in the Dimensions' 

Generalization. 
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1. Introduction 

 

Research on the existence of solutions to differential, integral, or 

boundary equations in a variety of sciences is a rich area where scientists 

regularly publish their findings and frequently employ fixed-point theorems 

to demonstrate the existence of solutions1-9. This does not always include 

proving the solution's uniqueness.   

Because of their breadth and difficulty, authors tend to steer clear of the 

study of the uniqueness of solutions in the generalization of dimension spaces. 
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Finding a point in big spaces and demonstrating its uniqueness is challenging. 

But there is one way to prove that, and this way what the authors will 

introduce by authors in this paper, which is proving the equivalence of the 

sequences to prove the uniqueness of the solution. The dimension space 

generalization was established by H. Gunawan10 by the definition of 𝑚 -

normed space and recently  Raj11 showed some properties in the dimension 

space generalizations. Current studies that improve the dimension space 

generalizations and their properties, we refer to the references12-18. 

This paper's primary goal is to investigate the circumstances that allow 

solutions in dimension space generalizations to be unique. 

 

2. Main Results 

 

Definition 2.1. 𝑚-Cauchy sequences {𝑥1𝑐
}, {𝑥2𝑐

}, … , {𝑥𝑚𝑐
} in an linear 

𝑚–normed spaces (𝑋, ‖∙, … ,∙‖) are said to be equivalent, denoted by  {𝑥1𝑐
} ≊

{𝑥2𝑐
} ≊, … , ≊ {𝑥𝑚𝑐

}  if for every neighborhood 𝜏of 0 there is an integer 

𝑁(𝜏) such that  1𝑐 , … , 𝑚𝑐 ≥ 𝑁(𝜏) implies that:  

(2.1)   𝑥1𝑐
− 𝑥2𝑐

 − ⋯ − 𝑥𝑚𝑐
∈ 𝜏 ⇒ ‖𝑥1𝑐

− 𝑥2𝑐
 − ⋯ − 𝑥𝑚𝑐

, 𝑦2, … , 𝑦𝑚‖ ∈ 𝜏,  

with respect to the independent set {𝑦2, … , 𝑦𝑚} in  𝑋. 

      Theorem 2.1.  For every  𝑦2, … , 𝑦𝑚 ∈ 𝑋,   {𝑥1𝑐
} ≊ {𝑥2𝑐

} ≊, … , ≊ {𝑥𝑚𝑐
} ∈

(𝑋, ‖∙, … ,∙‖) if and only if 𝑙𝑖𝑚
𝑐→∞

‖𝑥1𝑐
− 𝑥2𝑐

 − ⋯ − 𝑥𝑚𝑐
, 𝑦2, … , 𝑦𝑚‖ = 0.    

Proof.   Let  {𝑥1𝑐
} ≊ {𝑥2𝑐

} ≊, … , ≊ {𝑥𝑚𝑐
} then for 𝜏 of 0 there is an integer 

 𝑁(𝜏) such that  1𝑐 , … , 𝑚𝑐 ≥ 𝑁(𝜏)  implies that  (2.1) is fulfilled for every 

𝑦2, … , 𝑦𝑚 ∈ 𝑋, getting 𝑙𝑖𝑚
𝑘→∞

‖𝑥1𝑐
− 𝑥2𝑐

 − ⋯ − 𝑥𝑚𝑐
, 𝑦2, … , 𝑦𝑚‖ = 0 using 

Definition 2.1, which is proof the part if. Let 𝑙𝑖𝑚
𝑘→∞

‖𝑥1𝑐
− 𝑥2𝑐

 − ⋯ −

𝑥𝑚𝑐
, 𝑦2, … , 𝑦𝑚‖ = 0, concluding 𝑥1𝑐

≊ 𝑥2𝑐
≊, … , ≊ 𝑥𝑚𝑐

 are 𝑚-Cauchy 

sequences in (𝑋, ‖∙, … ,∙‖), then ‖𝑥1𝑐
− 𝑥2𝑐

 − ⋯ − 𝑥𝑚𝑐
, 𝑦2, … , 𝑦𝑚‖ ∈ 𝜏 for 

every  𝑦2, … , 𝑦𝑚 ∈ 𝑋, such that 𝜏 a neighborhood of  0  and  𝑥1𝑐
− 𝑥2𝑐

 − ⋯ −

𝑥𝑚𝑐
∈ 𝜏, when there exist an integer 𝑁(𝜏). Hence, {𝑥1𝑐

} ≊ {𝑥2𝑐
} ≊, … , ≊

{𝑥𝑚𝑐
} which proves the part only if. 

      Theorem 2.2.  If  {𝑥1𝑐
} is equivalent to {𝜗1𝑐

} ,  {𝑥2𝑐
} is equivalent to  {𝜗2𝑐

} 

and {𝑥𝑚𝑐
} is equivalent to  {𝜗𝑚𝑐

}  in (𝑋, ‖∙, … ,∙‖) then for all 𝑐 ∈ ℕ,   𝜔 ∈ ℝ 

and   𝑦2, … , 𝑦𝑚 ∈ 𝑋. 

i) {𝑥1𝑐
+ 𝑥2𝑐

+ ⋯ + 𝑥𝑚𝑐
} is equivalent to  {𝜗1𝑐

+ 𝜗2𝑐
+ ⋯ + 𝜗𝑚𝑐

}.  

ii) {𝜔𝑥1𝑐
} is equivalent to {𝜔𝜗1𝑐

},…,  {𝜔𝑥𝑚𝑐
} is equivalent to  {𝜔𝜗𝑚𝑐

}. 
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Proof.   ‖(𝑥1𝑐
+ 𝑥2𝑐

+ ⋯ + 𝑥𝑚𝑐
) − (𝜗1𝑐

+ 𝜗2𝑐
+ ⋯ + 𝜗𝑚𝑐

), 𝑦2, … , 𝑦𝑚‖   

= ‖(𝑥1𝑐
− 𝜗1𝑐

) + (𝑥2𝑐
− 𝜗2𝑐

) + ⋯ + (𝑥𝑚𝑐
− 𝜗𝑚𝑐

), 𝑦2, … , 𝑦𝑚‖  

 ≤ ‖(𝑥1𝑐
− 𝜗1𝑐

), 𝑦2, … , 𝑦𝑚‖ + ‖(𝑥2𝑐
− 𝜗2𝑐

), 𝑦2, … , 𝑦𝑚‖ +

             … + ‖(𝑥𝑚𝑐
− 𝜗𝑚𝑐

), 𝑦2, … , 𝑦𝑚‖        

𝑤ℎ𝑒𝑛  𝑐 → ∞. Using Theorem 3.1 to getting {𝑥1𝑐
+ 𝑥2𝑐

+ ⋯ + 𝑥𝑚𝑐
} ≃

{𝜗1𝑐
+ 𝜗2𝑐

+ ⋯ + 𝜗𝑚𝑐
}. Then (i) is proved. 

To prove (ii), taking   𝑐 → ∞, 

‖(𝜔𝑥1𝑐
− 𝜔𝜗1𝑐

)(𝜔𝑥2𝑐
− 𝜔𝜗2𝑐

) … (𝜔𝑥𝑚𝑐
− 𝜔𝜗𝑚𝑐

), 𝑦2, … , 𝑦𝑚‖  

                = |𝜔|‖(𝑥1𝑐
− 𝜗1𝑐

)(𝑥2𝑐
− 𝜗2𝑐

) … (𝑥𝑚𝑐
− 𝜗𝑚𝑐

), 𝑦2, … , 𝑦𝑚‖ 

                = |𝜔|. 0  

Then, {𝜔𝑥1𝑐
} ≊ {𝜔𝜗1𝑐

},  {𝜔𝑥2𝑐
} ≊ {𝜔𝜗2𝑐

} and {𝜔𝑥𝑚𝑐
} ≊ {𝜔𝜗𝑚𝑐

}. 

      Theorem 2.3.  On the set of 𝑚-Cauchy sequences on 𝑋 the relation ≊  is 

an equivalent relation in (𝑋, ‖∙, … ,∙‖).   

Proof. i) Since {𝑥1𝑐
} ≊ {𝑥1𝑐

} ≊ ⋯ ≊ {𝑥1𝑐
}, then the reflexivity property 

is satisfied.  

ii) For any permutation ℓ1, ℓ2, … , ℓ𝑚, in {𝑥1ℓ
} ≊ {𝑥2ℓ

} ≊, … , ≊ {𝑥𝑚ℓ
} we get 

that {𝑥1𝑐
} ≊ {𝑥2𝑐

} ≊, … , ≊ {𝑥𝑚𝑐
} then the symmetry and transitive properties 

have been fulfilled.  

Hence,  ≊  is the equivalent relation on(𝑋, ‖∙, … ,∙‖).   

Example. Let ℴ𝑚 ≤ 𝑚 the set of all real polynomials on [0,1].  

Considering usual addition and scalar multiplication, ℴ𝑚 is a linear vector 

space over ℝ.  Define the following m-normed on ℴ𝑚 

ℷ(𝜇, ℑ) = ∑ ‖𝜇(𝑥ℸ) − ℑ(𝑥ℸ), 𝑦2, … , 𝑦𝑚 ‖𝑚
ℸ  were 𝜇 and ℑ are linearly 

independent and 𝑦2, … , 𝑦𝑚 ∈ ℴ𝑚, the (ℷ(𝜇, ℑ), 𝑦2, … , 𝑦𝑚 ∈ ℴ𝑚) be a 

complete m-normed  space.  Using Banach contraction principle and apply 

our result to prove that any contraction self-mapping ℊ on 
(ℷ(𝜇, ℑ), 𝑦2, … , 𝑦𝑚 ∈ ℴ𝑚)   has a unique fixed point. 

Remark.  It is crucial to establish the equivalence of Cauchy sequences 

to demonstrate that the fixed points are distinct using the Banach contraction 

principle in the areas spaces (2-normed spaces). 

 

3. Conclusion 
 

 To prove that the fixed points are unique using the Banach contraction 

principle in the dimension space generalizations, it is crucial to establish the 

equivalence of Cauchy sequences. 
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Paper significance: This paper presents a study that allows us to prove the 

uniqueness of the solutions in the dimension space generalizations without requiring 

complex extra conditionals. 
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