Conformal β-Change of Finsler Metric

H. S. Shukla and Neelam Mishra
Department of Mathematics & Statistics
DDU Gorakhpur University, Gorakhpur, India

Email: profhsshuklagkp@rediffmail.com,
pneelammishra@gmail.com

(Received January 20, 2017)

Abstract: The purpose of the present paper is to find the necessary and sufficient conditions under which a conformal β-change of Finsler metric becomes a projective change. We have also found a condition under which a conformal β-change of Finsler metric leads a Douglas space into a Douglas space.

Keywords: Finsler Space, Finsler metric, conformal β-change, projective change, Douglas space.

2010 Mathematics Subject Classification: 53B40.

1. Introduction

Let $F^n=(M^n, L)$ be an n-dimensional Finsler space on the differentiable manifold M^n, equipped with the fundamental function $L(x,y)$. B. N. Prasad and Bindu Kumari¹ and C. Shibata² have considered the β-change of Finsler metric given by

$$L'(x,y) = f(L, \beta),$$

where f is positively homogeneous function of degree one in L and β, where β given by

$$\beta(x,y) = b_i(x)y^i$$

is a one-form on M^n.

The conformal theory of Finsler space was initiated by M. S. Knebelman³ in 1929 and has been investigated in detail by many authors (Hashiguchi⁴, Izumi⁵,⁶ and Kitayama⁷). The conformal change is defined as
\[L^*(x, y) \rightarrow e^{\sigma(x)} L(x, y), \]

where \(\sigma(x) \) is a function of position only and known as conformal factor.

In this paper we have combined the above two changes and have introduced another Finsler metric defined as

\[(1.1) \quad \overline{L}(x, y) = e^{\sigma} f(L, \beta), \]

where \(\sigma(x) \) is a function of \(x \) and \(\beta(x, y) = b_i(x) y^i \) is a 1-form on \(M^n \).

This conformal change of \((L, \beta)\)-metric will be called as conformal \(\beta \)-change of Finsler metric. When \(\sigma = 0 \), it reduces to a \(\beta \)-change. When \(\sigma \) is constant, it becomes a homothetic \(\beta \)-change. When \(f(L, \beta) \) has special forms as \(L + \beta, \frac{L^2}{L - \beta}, \frac{L^2}{\beta^m} (m \neq 0, -1) \), we get conformal Randers change, conformal Matsumoto change, conformal Kropina change, conformal generalized Kropina change of Finsler metric respectively. The Finsler space equipped with the metric \(\overline{L} \) given by (1.1) will be denoted by \(\overline{F}^n \). Throughout the paper the quantities corresponding to \(\overline{F}^n \) will be denoted by putting bar on the top of them.

The fundamental quantities of \(F^n \) are given by

\[g_{ij} = \frac{1}{2} \partial^2 L^2, \quad \ell = \frac{\partial L}{\partial y^i} \quad \text{and} \quad h_{ij} = L \frac{\partial^2 L^2}{\partial y^i \partial y^j} = g_{ij} - l_i l_j. \]

We shall denote the partial derivatives with respect to \(x^i \) and \(y^i \) by \(\partial_i \) and \(\partial_i^\prime \) respectively and write

\[L_i = \partial_i L, \quad L_{ij} = \partial_i ^\prime \partial_j L, \quad L_{ijk} = \partial_k ^\prime \partial_j ^\prime \partial_i L. \]

Then \(L_i = l_i, \quad L^{-1} h_{ij} = L_{ij} \). The geodesics of \(F^n \) are given by the system of differential equations

\[\frac{d^2 x^i}{ds^2} + 2G^i \left(x, \frac{dx}{ds} \right) = 0, \]

where \(G^i(x, y) \) are positively homogeneous of degree two in \(y^i \) and are given by

\[2G^i = g^{ij} \left(y^r \partial_j ^\prime \partial_r F - \partial_j F \right), \quad F = \frac{L^2}{2}. \]
where \(g^{ij} \) are the inverse of \(g_{ij} \).

Berwald connection \(B\Gamma=(G^i_{jk},G^i_j,0) \) of Finsler space is given by:

\[
G^i_j = \frac{\partial G^i_j}{\partial y^j}, \quad G^i_{jk} = \frac{\partial G^i_j}{\partial y^k}.
\]

The Cartan’s connection \((F^i_{jk},G^i_j,C^i_{jk}) \) is constructed from the metric function \(L \) with the help of following axioms:

1. Cartan’s connection \(C\Gamma \) is \(v \)-metrical.
2. Cartan’s connection \(C\Gamma \) is \(h \)-metrical.
3. The \((v) \)\(v \)-torsion tensor field \(S \) of Cartan’s connection vanishes.
4. The \((h) \)\(h \)-torsion tensor field \(T \) of Cartan’s connection vanishes.
5. The deflection tensor field \(D \) of Cartan’s connection vanishes.

The \(h \) - and \(v \) - covariant derivatives with respect to Cartan’s connection are denoted by \(|_k \) and \(|_k \) respectively. It is clear that the \(h \)-covariant derivative of \(L \) with respect to \(B\Gamma \) and \(C\Gamma \) is the same and vanishes identically. Further-more, the \(h \)-covariant derivatives of \(L, L_{ij} \) with respect to \(C\Gamma \) are also zero. We shall write

\[
2r_{ij} = b_{ij} + b_{ji}, \quad 2s_{ij} = b_{ij} - b_{ji}.
\]

2. Difference Tensor of Conformal \(\beta \)-Change

The conformal \(\beta \)-change of Finsler metric \(L \) is given by

\[
\bar{L}(x,y)=e^{\sigma f} L(x,y),
\]

where \(f \) is positively homogeneous function of degree one in \(L \) and \(\beta \). Homogeneity of \(f \) gives

\[
L f_1 + \beta f_2 = f,
\]

where subscripts “1” and “2” denote the partial derivatives with respect to \(L \) and \(\beta \) respectively.

Differentiating above equations with respect to \(L \) and \(\beta \) respectively, we get
\[L_{f_{12}} + \beta f_{22} = 0 \quad \text{and} \quad L_{f_{11}} + \beta f_{21} = 0. \]

Hence, we have
\[\frac{f_{11}}{\beta^2} - \frac{f_{12}}{L \beta} = \frac{f_{22}}{L^2}, \]
which gives
\[f_{11} = \beta^2 \omega, \quad f_{12} = -L \beta \omega, \quad f_{22} = L^2 \omega, \]
where Weierstrass function \(\omega \) is positively homogeneous of degree-3 in \(L \) and \(\beta \). Therefore
\[L \omega_1 + \beta \omega_2 + 3 \omega = 0, \]
where \(\omega_1 \) and \(\omega_2 \) are positively homogeneous of degree – 4 in \(L \) and \(\beta \).

Throughout the paper we frequently use the above equations without quoting them. Also we have assumed that \(f \) is not a linear function of \(L \) and \(\beta \) so that \(\omega \neq 0 \). We now put

\[2.1 \quad \overline{G}^i = G^i + D^i. \]

Then \(\overline{G}^i_j = G^i_j + D^i_j \) and \(\overline{G}^i_{jk} = G^i_{jk} + D^i_{jk} \), where \(D^i_j = \hat{\partial}_j D^i \) and \(D^i_{jk} = \hat{\partial}_k D^i_j \).

The tensors \(D^i \), \(D^i_j \) and \(D^i_{jk} \) are positively homogeneous in \(y^i \) of degree two, one and zero respectively. To find \(D^i \) we deal with equation \(L_{ij \, lk} = 0 \), i.e.,

\[2.2 \quad \hat{\partial}_k L_{ij} - L_{ij \, ,k}, G^r_{k} - L_{ij} F_{ik}^r - L_{ik} F_{jk}^r = 0. \]

Since \(\hat{\partial}_i \beta = b_1 \), from (1.1), we have

\[2.3 \quad \overline{L}_i = e^i \left(f_i L_i + f_2 b_i \right), \]

\[\overline{L}_{ij} = e^{[i} \left[f_i L_{ij} + \beta^2 \omega L_i L_j - L \beta \omega (L_i b_j + L_j b_i) + L^2 b_i b_j \right]. \]
Conformal β-Change of Finsler Metric

$$\bar{L}_{ijk} = e^\sigma \left[f_i L_{ijk} + \beta^2 \omega \left(L_i L_{jk} + L_j L_{ik} + L_k L_{ij} \right) - L \beta \omega \left(b_i L_{jk} + b_j L_{ik} + b_k L_{ij} \right) \right],$$

where $\sigma_k = \frac{\partial \sigma}{\partial x^k}$.

Since $\bar{L}_{ij|k} = 0$ in \bar{F}^n, after using (2.1), we have

$$\partial_k \bar{L}_{ij} - \bar{L}_{ijr} \tilde{G}^r_k - \bar{L}_{ij} \bar{F}^r_{ik} - L_{ir} \bar{F}^r_{jk} = 0.$$

Substituting in the above equation the values of $\partial_k \bar{L}_{ij}$, \bar{L}_{ir} and \bar{L}_{ijk} from (2.3) in (2.4) and then contracting the equation thus obtained with γ^k, we get

$$2 \bar{L}_{ijr} D^r + f_{ij} \bar{D}^r + \bar{L}_{ijr} D^r - \omega (L^2 b_j - L \beta b_j) (r_{i0} + s_{i0})
- \omega (L^2 b_j - L \beta b_j) (r_{j0} + s_{j0}) - \left\{ -L \beta \omega L_{ij} + \beta (2 \omega + \beta \omega_2) L_1 L_j \right\} r_{00}
+ \left\{ f_i L_{ij} + \beta^2 \omega L_i L_j - L \beta \omega (L_i b_j + L_j b_i) + L^2 \omega b_i b_j \right\} r_0 = 0,$$
where \(0' \) stands for contraction with \(y^k, \) viz., \(r_{j0} = r_{jk} y^k, \) \(r_{00} = r_{jk} y^j y^k, \) \(\sigma_0 = \sigma_i y^i \)
and we have used the fact that \(D'_{jk} y^k = D'_{jk} = D'_{ij} \), where \(D'_{jk} = F'_{jk} - F'_{jk}. \)
Next, we deal with \(L_{ij} = 0, \) that is,

\[
\partial_j \bar{L}_{ij} - \bar{L}_{ij} \bar{G}'_{ij} - \bar{L}_{r} \bar{F}'_{ij} = 0.
\]

Putting the values of \(\partial_j \bar{L}_{ij}, \) \(\bar{L}_{ir} \) and \(\bar{L}_r \) from (2.3) in (2.6) we get,

\[
f_{2} b_{ij} = \left\{ f_i L_{ir} + \beta^2 \omega L_{ir} - L \beta \omega (L_i b_r + L_r b_i) + L^2 \omega b_r b_i \right\} D'_j \\
+ \left\{ f_i L_{jr} + \beta^2 \omega L_{jr} - L \beta \omega (L_j b_r + L_r b_j) + L^2 \omega b_r b_j \right\} D'_i \\
- \left(L^2 \omega b_i - L \beta \omega L_i \right) (r_{0j} + s_{0j}) - \left(L^2 \omega b_j - L \beta \omega L_j \right) (r_{0i} + s_{0i}) \\
- (f_i L_{jr} + f_j L_{ir} + f_{2j} b_i) \sigma_j - (f_i L_{ir} + f_j L_{jr} + f_{2i} b_j) \sigma_i + 2(f_i L_{ir} + f_{2j} b_j) D'_{ij},
\]

hence after using \(2 r_{ij} = b_{ijl} + b_{jli} \) and \(2 s_{ij} = b_{ijl} - b_{jli}, \) we get

\[
2 f_{2} r_{ij} = \left\{ f_i L_{ir} + \beta^2 \omega L_{ir} - L \beta \omega (L_i b_r + L_r b_i) + L^2 \omega b_r b_i \right\} D'_j \\
+ \left\{ f_i L_{jr} + \beta^2 \omega L_{jr} - L \beta \omega (L_j b_r + L_r b_j) + L^2 \omega b_r b_j \right\} D'_i \\
- \left(L^2 \omega b_i - L \beta \omega L_i \right) (r_{0j} + s_{0j}) - \left(L^2 \omega b_j - L \beta \omega L_j \right) (r_{0i} + s_{0i}) \\
- (f_i L_{jr} + f_{2j} b_i) \sigma_j - (f_i L_{ir} + f_{2i} b_j) \sigma_i + 2(f_i L_{jr} + f_{2j} b_j) D'_{ij},
\]

\[
2 f_{2} s_{ij} = \left\{ f_i L_{ir} + \beta^2 \omega L_{ir} - L \beta \omega (L_i b_r + L_r b_i) + L^2 \omega b_r b_i \right\} D'_j \\
+ \left\{ f_i L_{jr} + \beta^2 \omega L_{jr} - L \beta \omega (L_j b_r + L_r b_j) + L^2 \omega b_r b_j \right\} D'_i \\
- \left(L^2 \omega b_i - L \beta \omega L_i \right) (r_{0j} + s_{0j}) + \left(L^2 \omega b_j - L \beta \omega L_j \right) (r_{0i} + s_{0i}) \\
- (f_i L_{jr} + f_{2j} b_i) \sigma_j + (f_i L_{ir} + f_{2i} b_j) \sigma_i + 2(f_i L_{jr} + f_{2j} b_j) D'_{ij}.
\]

Subtracting (2.7) from (2.5) and contracting the resulting equation with \(y^i, \) we get

\[
2 f_{2} r_{ij} = \left\{ f_i L_{ir} + \beta^2 \omega L_{ir} - L \beta \omega (L_i b_r + L_r b_i) + L^2 \omega b_r b_i \right\} D'_j \\
+ \left\{ f_i L_{jr} + \beta^2 \omega L_{jr} - L \beta \omega (L_j b_r + L_r b_j) + L^2 \omega b_r b_j \right\} D'_i \\
- \left(L^2 \omega b_i - L \beta \omega L_i \right) (r_{0j} + s_{0j}) - \left(L^2 \omega b_j - L \beta \omega L_j \right) (r_{0i} + s_{0i}) \\
- (f_i L_{jr} + f_{2j} b_i) \sigma_j - (f_i L_{ir} + f_{2i} b_j) \sigma_i + 2(f_i L_{jr} + f_{2j} b_j) D'_{ij},
\]

Contracting (2.9) with \(y^i, \) we get
$$\{f_{i}L_{i}+f_{2}b_{i}\}D'=\frac{1}{2}(f_{2}r_{00}+f_{o}).$$ \hspace{1cm} (2.10)$$

Subtracting (2.8) from (2.5) and contracting the resulting equation with \(y^{j}\), we get

$$\left\{f_{i}L_{i}+\beta^{2}\omega L_{i}L_{r}-L\beta\omega(L_{i}b_{r}+L_{r}b_{i})+L^{2}\omega b_{r}b_{i}\right\}D'$$

$$=f_{2}s_{0}+\frac{1}{2}(L^{2}\omega b_{i}-L\beta\omega L_{i})r_{00}+L\beta\omega(L_{i}\beta-Lb_{i})y^{k}\sigma_{k}$$

$$+\frac{1}{2}(f_{2}L_{i}+f_{2}b_{i})\sigma_{0}-\frac{1}{2}f\sigma_{i}.$$ \hspace{1cm} (2.11)

In view of \(LL_{ir}=g_{ir}-L_{i}L_{r}\), equation (2.11) can be written as

$$\left\{f_{i}L_{i}g_{ir}D'+\left(-\frac{f_{i}}{L}+\beta^{2}\omega\right)L_{i}L_{r}\beta\omega b_{i}\right\}L_{r}D'+\left(L^{2}\omega b_{i}-L\beta\omega L_{i}\right)b_{r}D'$$

$$=f_{2}s_{0}+\frac{1}{2}(L^{2}\omega b_{i}-L\beta\omega L_{i})r_{00}+\frac{1}{2}(f_{2}L_{i}+f_{2}b_{i})\sigma_{0}-\frac{1}{2}f\sigma_{i}.$$ \hspace{1cm} (2.12)

Contracting (2.12) by \(b^{i}=g^{ij}b_{j}\), we get

$$\left\{-\frac{f_{i}L_{i}+\beta^{2}\omega}{L^{2}}-L\beta\omega L_{r}\right\}L_{r}D'+\left(-\frac{f_{i}}{L}+\beta^{2}\omega\right)L_{i}D'+\left(L^{2}\omega b_{i}-L\beta\omega L_{i}\right)\sigma_{0}-\frac{1}{2}f\sigma_{i}.$$ \hspace{1cm} (2.13)

where \(\Delta = b^{2} - \frac{\beta^{2}}{L^{2}}\) and \(\sigma_{1} = \sigma_{1}b^{i}\).

The equation (2.10) and (2.13) are algebraic equations in \(L_{r}D'\) and \(b_{r}D'\), whose solution is given by

$$\frac{(f_{i}f_{2}\beta+L^{2}\omega f\Delta)r_{00}+2f_{i}f_{2}L^{2}s_{00}+\left\{\beta(f_{i}+L^{3}\omega\Delta)\right\}\sigma_{0}-ff_{2}L\sigma_{1}}{2f\left(f_{i}+L^{3}\omega\Delta\right)}$$ \hspace{1cm} (2.14)

and
(2.15) \[L_r D' = \frac{L f_1 f_2 r_{00} - f_2^2 L^2 s_0 + L \left[f (f_1 + L^3 \omega \Delta) - \left(L f_2 b^2 + \beta f_1 f_2 \right) \right] \sigma_0 - ff_2 L^2 \sigma_i}{2 f (f_1 + L^3 \omega \Delta)}. \]

Contracting (2.12) by \(g^{ij} \) and putting the values of \(L_r D' \) and \(b_r D' \), we get

\[
D^i = \left\{ \frac{\left(f_1 f_2 - L \beta \omega f \right) (f_1 r_{00} - 2 L f_2 s_0)}{2 f f_1 (f_1 + L^3 \omega \Delta)} + \sigma_0 + \frac{\left(f_1 f_2 - L \beta \omega f \right)}{2 f f_1 (f_1 + L^3 \omega \Delta)} \right\} y^i \\
+ \left\{ \frac{L^3 \omega (f_1 r_{00} - 2 L f_2 s_0)}{2 f_1 (f_1 + L^3 \omega \Delta)} + \frac{L f_2}{2 f_1} \sigma_0 + \frac{L f \sigma_1 - \left(L f_2 b^2 + \beta f_1 \right) \sigma_0}{2 f_1 (f_1 + L^3 \omega \Delta)} \right\} b^i \\
- \frac{L f}{2 f_1} \sigma_j g^{ij} + \frac{L f_2}{f_1} s_0^i,
\]

where \(l^i = y^i L^{-1} \).

Proposition 2.1: The difference tensor \(D' = \overline{G}' - G' \) of conformal \(\beta \)-change of Finsler metric is given by (2.16).

3. Projective Change of Finsler Metric

The Finsler space \(F^n \) is said to be projective to Finsler space \(\overline{F}^n \) if every geodesic of \(F^n \) is transformed to a geodesic of \(\overline{F}^n \) and vice-versa. It is well known that the change \(L \rightarrow \overline{L} \) is projective iff \(\overline{G}' = G' + P(x, y)y^i \), where \(P(x, y) \) is a homogeneous scalar function of degree one in \(y^i \), called projective factor\(^{10} \). Thus from (2.1) it follow that \(L \rightarrow \overline{L} \) is projective iff \(D' = Py^i \). Now we consider that the changes \(L \rightarrow \overline{L} \) is projective. Then from equation (2.16), we have
Conformal β-Change of Finsler Metric

(3.1)

$$P_{yi} = \left\{ \frac{(f_{i} f_{j} - L \beta \omega f)(f_{i} r_{\omega \omega} - 2 L f_{j} s_{0})}{2 f f_{i}(f_{i} + L^3 \omega \Delta)} + \frac{(f_{i} f_{j} - L \beta \omega f)(Lf \sigma_{i} - (L f_{j} b^{2} + \beta f_{j}) \sigma_{0})}{2 f f_{i}(f_{i} + L^3 \omega \Delta)} \right\} y^{i}$$

$$+ \left\{ \frac{L^{3} \omega(f_{i} r_{\omega \omega} - 2 L f_{j} s_{0})}{2 f f_{i}(f_{i} + L^3 \omega \Delta)} + \frac{L^{3} \omega(L f \sigma_{i} - (L f_{j} b^{2} + \beta f_{j}) \sigma_{0})}{2 f f_{i}(f_{i} + L^3 \omega \Delta)} \right\} b^{i}$$

$$- \frac{Lf_{j}}{2 f f_{i}} g^{ij} + \frac{L f_{j}}{f_{i}} s_{0}.$$

Contracting (3.1) with $y_{i}(=g_{ij}y^{j})$ and using the fact that $s_{0}^{i} y_{i} = 0$ and $y_{i} y^{i} = L^{2}$, we get

(3.2)

$$P = \frac{f_{i} f_{j} f_{i} r_{\omega \omega} - 2 L f_{j} s_{0}}{2 f f_{i}(f_{i} + L^3 \omega \Delta)} + \frac{L f \sigma_{i} + \{ f f_{i}(f_{i} + L^3 \omega \Delta) - f_{j} f f_{j}(L f_{j} b^{2} + \beta f_{j}) \sigma_{0} \}}{2 f f_{i}(f_{i} + L^3 \omega \Delta)}.$$

Putting the value of P from (3.2) in (3.1), we get

(3.3)

$$\left\{ L f \sigma_{i} - (L f_{j} b^{2} + \beta f_{j}) \sigma_{0} \right\} \left(L f \omega y^{i} - L^{3} \omega b^{i} \right)$$

$$+ \left\{ L f f_{i} f f_{j} b^{i} \sigma_{0} \right\} \left(L f \sigma_{i} - (L f_{j} b^{2} + \beta f_{j}) \sigma_{0} \right) \left(L f \omega y^{i} - L^{3} \omega b^{i} \right)$$

$$= - L f f_{j} g^{ij} + 2 f f_{j}(f_{j} + L^3 \omega \Delta)s_{0}.$$

Transvecting (3.3) by b_{i}, we get

(3.4)

$$r_{\omega \omega} = - \frac{2 L f_{j} s_{0} + L f \sigma_{i} - (L f_{j} b^{2} + \beta f_{j}) \sigma_{0}}{L^3 \omega \Delta}.$$

Substituting the value of $r_{\omega \omega}$ from (3.4) in (3.2), we get

(3.5)

$$P = \frac{-2 f f_{j} s_{0} + L f f_{i} f f_{j} - f_{j} f f_{j}(L f_{j} b^{2} + \beta f_{j}) \sigma_{0} + f L^3 \omega \Delta \sigma_{0}}{2 f L^3 \omega \Delta}.$$

Substituting the value of $r_{\omega \omega}$ from (3.4) in (3.3), we get
The equations (3.4) and (3.6) give the necessary conditions under which the change $L \rightarrow \bar{L}$ becomes a projective change.

Conversely, if conditions (3.4) and (3.6) are satisfied, then putting the values of r_{00}^i and s_0^i from (3.4) and (3.6) respectively in (2.16), we get

$$D' = \frac{-2f_2^2 s_0 + Lf_2 f_1 f_0 + fL^3 \omega \Delta \sigma_0}{2Lf_2} \frac{\sigma_1 - (Lf_2 b^2 + \beta f_1)\sigma_0}{2Lf_2^4 \omega \Delta}$$

i.e. $D' = P_y'$, where P is given by (3.5). Thus \overline{F}^n is projective to F^n.

Theorem 3.1: The conformal β-change of Finsler metric is projective iff (3.4) and (3.6) hold good, the projective factor P is given by (3.5).

When $\sigma = 0$, the change (1.1) is simply a β-change of original metric and the condition (3.4) reduces to

$$r_{00} = \frac{-2Lf_2 s_0}{L^3 \omega \Delta}$$

where as the condition (3.6) reduces to

$$s_0' = \left(b' - \frac{\beta L^2 y'}{L^2} \right) \frac{s_0}{\Delta}.$$

Thus we get

Corollary 3.1: The β-change of Finsler metric is projective iff (3.7) and (3.8) hold good.

This result has been investigated in12.
4. Douglas Space

The Finsler space F^n is called a Douglas space iff $G^i y^j - G^j y^i$ is homogeneous polynomial of degree three in y^i. We shall write $hp(r)$ to denote a homogeneous polynomial in y^i of degree r. If we write $B^{ij} = D^i y^j - D^j y^i$, then from (2.16), we get

\[
B^{ij} = \left[\frac{L^3 \omega (f_i r_{00} - 2 L f_i s_0)}{2 f_i (f_i + L^3 \omega \Delta)} + \frac{L f_i}{2 f_i} \sigma_0 + \frac{L^3 \omega \left[L f \sigma_1 - (L f_i b^j + \beta f_i) \sigma_0 \right]}{2 f_i (f_i + L^3 \omega \Delta)} \right] (b^i y^j - b^j y^i) + \frac{L f_i}{f_i} (s^i_0 y^j - s^j_0 y^i).
\]

If a Douglas space is transformed to a Douglas space by a conformal β-change of Finsler metric (2.1) then B^{ij} must be $hp(3)$ and vice-versa.

Theorem 4.1: The conformal β-change of Finsler metric leads a Douglas space into a Douglas space iff B^{ij} given by (4.1) is $hp(3)$.

When $\sigma = 0$, the change (1.1) is simply a β-change of original metric and the condition (4.1) reduces to

\[
B^{ij} = \left[\frac{L^3 \omega (f_i r_{00} - 2 L f_i s_0)}{2 f_i (f_i + L^3 \omega \Delta)} \right] (b^i y^j - b^j y^i) + \frac{L f_i}{f_i} (s^i_0 y^j - s^j_0 y^i).
\]

Thus we get

Corollary 4.1: The β-change of Finsler metric leads a Douglas space into a Douglas space iff B^{ij} given by (4.2) is $hp(3)$.

This result has been investigated in12.

Acknowledgement

The work contained in this research paper is part of Major Research Project ‘Certain Investigations in Finsler Geometry ’ financed by the U.G.C., New Delhi.
References

