On Totally Geodesic Affine Immersion in Locally Product Riemannian Manifolds

J. P. Srivastava and Sudershan Khajuria
Department of Mathematics, University of Jammu, Jammu, India.

(Received December 14, 1997)

Abstract: In this paper the totally geodesic affine immersions \(f: (M, \nabla) \to (\overline{M}, \overline{\nabla}) \) are studied in the case when \((\overline{M}, \overline{\nabla})\) is an affine locally product manifold of recurrent curvature. It is proved that \((M, \nabla)\) is flat or of recurrent curvature.

1. Preliminaries

Let \((M, \nabla)\) and \((\overline{M}, \overline{\nabla})\) be connected differentiable manifolds with torsion free affine connection \(\overline{\nabla}\) and \(\nabla\) with a Riemannian metric \(g\) and \(\overline{g}\) respectively. Then Gauss and Wiengarten formulae given by

\[
(1.1) \quad \overline{\nabla}_X Y = \nabla_X Y + B(X, Y), \quad (b) \overline{\nabla}_X \overline{V} = -A_Y X + D_X \overline{V}
\]

for all \(x, y \in TM\) and \(V \in T^1M\), where \(\overline{\nabla}, \nabla\) and \(D\) are respectively the Riemannian, induced Riemannian and induced connections in \(\overline{M}, M\) and the normal bundle of \(T^1M\) of \(M\) respectively. \(B\) is the second fundamental form related to \(A\) by \(g(B(X, Y), U) = g(A_X U, Y)\).

The submanifold \(M\) of \(\overline{M}\) is known to be

(i) totally geodesic in \(\overline{M}\) if \(B = 0\).

(ii) minimal if \(\mu = \text{Trace}(B) / \text{Dim}(M) = 0\), and

(iii) totally umbilical if \(B(X, Y) = g(X, Y)\mu, X, Y \in TM\).

Fundamental Gauss and Codazzi equations for the affine immersion can be written as follows:

\[
(1.2) \quad \overline{R}(X, Y) Z = R(X, Y) Z + A_B(X, Z) Y - A_B(Y, Z) X
\]

\[+ \left(\nabla_X B \right)(Y, Z) - \left(\nabla_Y B \right)(X, Z), \]
\[(1.3) \quad \overline{R}(X, Y) V = \left(\nabla_Y A \right)_Y X - \left(\nabla_X A \right)_Y Y + B\left(A_Y X, Y \right) - B\left(X, A_Y Y \right) + \overline{R}(X, Y) V \]

for vector fields X, Y and Z tangent to M. Taking the normal component of (1.1a) we obtain the equation of Codazzi as

\[(1.4) \quad \left(\overline{R}(X, Y) Z \right)^1 = \left(\nabla_X B \right)(Y, Z) - \left(\nabla_Y B \right)(X, Z). \]

For a submanifold M of a locally product Riemannian manifold \overline{M} we put

\[FX = tX + fX \quad \text{and} \quad FV = hV + sV \]

where tX is the tangential part of FX and fX the normal part of FX. Then t is an endomorphism of the tangent bundle TM and f is a normal bundle value 1-form on the tangent bundle. In this case

\[(1.5) \quad t^2 X = X - hfX, \quad ftX + sfX = 0, \]

\[(1.6) \quad s^2 V = V - fhV, \quad thV + hsV = 0. \]

The covariant derivatives \(\nabla_X B \) and \(\nabla_X A \) are defined by

\[(1.7) \quad \nabla_X B(Y, Z) = D_X(B(Y, Z)) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z) \]

\[(1.8) \quad \left(\nabla_X A \right)_Y Y = \nabla_X A_Y Y - A_Y \nabla_X Y - A_{D_X Y} Y. \]

2. Riemannian Product Immersion

Let M^m and M^n be Riemannian manifolds of dimension m and n respectively. We consider the product manifold $\overline{M} = M^m \times M^n$ of dimension $m + n$, then \overline{M} admits the product structure tensor field F such that $F^2 = I$, where I the identity tensor and $g(FX, Y) = g(X, FY)$ for any vector field X and Y on \overline{M}.

Let M be a k-dimensional submanifold of \overline{M}. If $F T_x (M) \subset T_x (M)$ for each point x of M, then M is said to be an F-invariant in \overline{M}. Let \overline{M} be a locally decomposable Riemannian manifold, i.e. $\nabla_X F = 0$. If M is an F-invariant submanifold of a locally decomposable Riemannian manifold \overline{M}, then $(\nabla_X F) V = 0$ and $sB(X, Y) = B(X, FY)$ Then we have
Theorem 2.1: Let M be an F-invariant submanifold of a Riemannian product manifold $\overline{M} = \overline{M}^m \times \overline{M}^n$. Then M is a Riemannian product manifold $M^p \times M^q$ where M^p is a submanifold of \overline{M}^m and M^q is a submanifold of \overline{M}^n. M^p and M^q being both totally geodesic in \overline{M}.

We denote by the same F the almost product structure on M, we now define the curvature tensor R^1 of the normal bundle of M by

$$R^1(X, Y) = D_X D_Y - D_Y D_X - D_{[X, Y]},$$

If $R^1 = 0$, the normal connexion of M is said to be flat. It is well known that $R^1 = 0$ if and only if we can choose an orthonormal frame $\{V_a\}$ of the normal bundle TM^1 such that $D_{V_a} = 0$ for all a.

Lemma 2.2: Let M be an F-invariant submanifold of a locally Riemannian product manifold $\overline{M} = \overline{M}^m \times \overline{M}^n$. If the normal connexion of M is flat, then the normal connection of M^p in \overline{M}^m and that of M^q in \overline{M}^n are both flat, where $M = M^p \times M^q$.

Proof: Let V be a vector field in TM^1 in \overline{M}^m. We can suppose that

$$T_X(\overline{M}^m) = \left\{ X \in T_X(\overline{M}) : FX = X \right\}.$$

For any vector field X tangent to M, we have

$$FD_X V = F\nabla_X V + FA_Y X = \nabla_X FV + FA_Y X = -A_{FY} X + D_X FY + FA_Y X = D_X V$$

because $FY = Y$. Therefore, if $V \in TM^1$, then $D_X V = TM^1$ which means that TM^1 is parallel. From this we see that the normal connexion of M^p in \overline{M}^m is flat. Similarly, we can see that the normal connexion of M^q in \overline{M}^n is also flat. We assume that \overline{M}^m and \overline{M}^n are complex space forms with constant sectional curvature c_1 and c_2 and denote them by $\overline{M}^m(c_1)$ and $\overline{M}^n(c_2)$ respectively. Let M be an F-invariant submanifold of $M = M^m(c_1) \times M^n(c_2)$. We denote by R the Riemannian curvature tensor of M. Then the Gauss equation of M is given by

$$R(X, Y)Z = \frac{1}{16} \left(c_1 + c_2 \right) \left[g(Y, Z)X - g(X, Z)Y + g(Y, Z) FX - g(FY, Z) FX - g(FX, Z) FY + g(FY, Z) FY \right].$$
\(+ 2g(FX, tY) \, tFZ \) + \(\frac{1}{16} \left(c_1 - c_2 \right) [g(FY, Z) \, FX] \\
- g(FX, Z) \, Y + g(Y, Z) \, FX - g(X, Z) \, FY + g(FtX, Z) \, tX \\
- g(FtY, Z) \, tY + g(tY, Z) \, FtX - g(tX, Z) \, FtY + 2g(FX, tY) \, tZ \\
+ 2g(X, tY) \, tfZ \) + \(A_B (Y, Z)^{X-A} B (X, Z) \, Y \).

and the Codazzi equation by

\[
(2.3) \quad \left(\nabla_X B \right)(Y, Z) - \left(\nabla_Y B \right)(X, Z) \\
= \frac{1}{16} \left(c_1 + c_2 \right) [g(tY, Z) \, fX - g(tX, Z) \, fY + 2g(X, tY) \, fZ \\
+ g(FtY, Z) \, fFX - g(FtX, Z) \, fFY + 2g(FX, tY) \, fFZ] \\
+ \frac{1}{16} \left(c_1 - c_2 \right) [g(FtY, Z) \, fXF - g(FtX, Z) \, fFY + g(tY, Z) \, fFX \\
- g(tX, Z) \, fFY + 2g(FX, tY) \, fFZ + 2g(X, tY) \, fFZ].
\]

3. Totally Geodesic Immersion

Since for a totally geodesic immersion \(\nabla_X Y = \nabla_X Y \), the Gauss equation becomes

\[
(3.1) \quad R(X, Y) \, Z = \frac{1}{16} \left(c_1 + c_2 \right) [g(Y, Z) \, X - g(X, Z) \, Y \\
+ g(tY, Z) \, tX - g(tX, Z) \, tY + 2g(X, tY) \, tZ + g(FY, Z) \, FX \\
- g(FX, Z) \, FY + g(FtY, Z) \, FtX - g(FtX, Z) \, FtY \\
+ 2g(FX, tY) \, FtZ] + \frac{1}{16} \left(c_1 - c_2 \right) [g(FY, Z) \, X - g(FX, Z) \, Y \\
+ g(Y, Z) \, FX - g(X, Z) \, FY + g(FtX, Z) \, tX - g(FtY, Z) \, tY \\
+ g(tY, Z) \, FtX - g(tX, Z) \, FtY + 2g(FX, tY) \, tZ \\
+ 2g(X, tY) \, tfZ].
\]
In this case the Ricci Tensor S of M is given by

$$
S(X, Y) = \frac{1}{16} \left(c_1 + c_2 \right) [(k - 2) g(X, Y) + g(\mathcal{F}X, Y) \text{Tr}F + 6g(\mathcal{F}X, Y)] + \frac{1}{16} \left(c_1 - c_2 \right) [(k - 2) g(\mathcal{F}X, Y) + g(X, Y) \text{Tr}F + 6g(\mathcal{F}X, Y)].
$$

Assume that f is an affine immersion. We define covariant derivative $\nabla^2 A$ by

$$
(\nabla^2_{XY} A)_V W = (\nabla_X (\nabla_Y A))_V W - (\nabla_{\nabla_X Y} A)_V W
$$

for arbitrary vector fields X, Y, Z, W tangent to M and V a normal vector field. After a simple calculation we have

$$
(\nabla^2_{XY} A)_V W = \nabla_X \nabla_Y A_V W - \nabla_W A_V \nabla_Y W
$$

$$
- \nabla_X A_{D_Y V} W - \nabla_Y A_V \nabla_X W + A_V \nabla_Y \nabla_X W
$$

$$
+ A_{D_Y V} \nabla_X W - \nabla_Y A_{D_X V} W + A_{D_X V} \nabla_Y W + A_V \nabla_{\nabla_X Y} W
$$

$$
+ A_{D_Y D_X V} W - \nabla_{\nabla_X Y} A_V W + A_{D_{\nabla_X Y} V} W.
$$

In consequence of (3.5) we have

$$
(\nabla^2_{XY} A)_V W = R(X, Y) A_V W - A_V R(X, Y) W = A_{R^1(X, Y) V} W
$$

Theorem 3.1: We have

$$
\overline{R}(X, Y) Z = R(X, Y) Z.
$$

$$
\overline{R}(X, Y) V = - \left(\nabla_X A \right)_V Y + \left(\nabla_Y A \right)_V X + R^1(X, Y) V.
$$

Theorem 3.2: For a totally geodesic immersion

$$
(\nabla^2_{XY} \overline{R})(X, Y) Z = (\nabla^2_{XY} R)(X, Y) Z.
$$
(3.10) \[
\left(\overline{\nabla}_W \overline{R} \right) (X, Y) V = (R(X, Y) A)_{\nu} W + A_{\nu} R(X, Y) W
- \left(\overline{\nabla}_W^2 X \right)_{\nu} Y + \left(\overline{\nabla}_W^2 Y \right)_{\nu} X + \left(\overline{\nabla}_W \overline{R}^1 \right) (X, Y) V.
\]

Proof: The relation is a direct consequence of formulae and
\[
\left(\overline{\nabla}_W \overline{R} \right) (X, Y) Z = \overline{\nabla}_W \overline{R} (X, Y) Z - \overline{R} \left(\overline{\nabla}_W X, Y \right) Z
- \overline{R} \left(X, \overline{\nabla}_W Y \right) W - \overline{R} (X, Y) \overline{\nabla}_W Z
= \nabla_W R(X, Y) Z - R \left(\nabla_W X, Y \right) Z - R \left(X, \nabla_W Y \right) W
- R(X, Y) \nabla_W Z = \left(\nabla_W R \right) (X, Y) Z.
\]

Using \(\overline{\nabla} Y = \nabla X \), (3.4) and (1.1b), we get
\[
\overline{\nabla}_W \overline{R}(X, Y) V = \overline{\nabla}_W \left(\left(\nabla_Y A \right)_{\nu} X - \left(\nabla_X A \right)_{\nu} Y + R^1 (X, Y) V \right)
= \nabla_W \left(\nabla_Y A \right)_{\nu} X - \nabla_W \left(\nabla_X A \right)_{\nu} Y + \nabla_W \left(R^1 (X, Y) V \right)
= \nabla_W \left(\nabla_Y A \right)_{\nu} X - \nabla_W \left(\nabla_X A \right)_{\nu} Y - A R^1 (X, Y) V W
+ D_W R^1 (X, Y) V
\]
and
\[
R \left(\overline{\nabla}_W X, Y \right) V = \overline{R} \left(\nabla_W X, Y \right) V
= \left(\nabla_Y A \right)_{\nu} \nabla_W X - \left(\nabla_{\nabla_W X} A \right)_{\nu} Y + R^1 \left(\nabla_W X, Y \right) V
\]
\[
\overline{R} \left(X, \overline{\nabla}_W Y \right) V = \overline{R} \left(X, \nabla_W Y \right) V
= \left(\nabla_{\overline{\nabla}_W Y} A \right)_{\nu} X - \left(\nabla_X A \right)_{\nu} \nabla_W Y + R^1 \left(X, \nabla_W Y \right) V
\]
\[\tilde{\nabla} V = \tilde{\nabla} V \]

\[\quad = \tilde{\nabla} (X, Y) V = \tilde{\nabla} (X, Y) D V \]

\[\quad = - \tilde{\nabla} (X, Y) A V + \tilde{\nabla} (X, Y) D V \]

\[\quad = - \tilde{\nabla} (X, Y) A V + \left(\nabla V A \right) D V \]

\[\quad = - \left(\nabla V A \right) D V + R (X, Y) D V \]

Applying the above and (3.4) to the formulae

\[\left(\tilde{\nabla} \tilde{\nabla} \right) (X, Y) V = \tilde{\nabla} (X, Y) V - \tilde{\nabla} \left(\nabla V X, Y \right) V - \tilde{\nabla} \left(X, \nabla V Y \right) V \]

\[\quad - \tilde{\nabla} (X, Y) V = \tilde{\nabla} \left(\nabla V X, Y \right) V - \tilde{\nabla} \left(\nabla V X, Y \right) V - \tilde{\nabla} \left(X, \nabla V Y \right) V \]

\[\quad = \tilde{\nabla} (X, Y) V \]

\[\quad = \tilde{\nabla} (X, Y) V + \tilde{\nabla} (X, Y) V \]

\[\quad = \tilde{\nabla} (X, Y) V \]
Let f be an affine immersion. For a 1-form ρ on the normal bundle $N(M)$ and its first and second covariant derivatives with respect to the connection D are defined by

\[
\left(D_X \rho \right) (V) = X(\rho(V)) - \rho(D_X V),
\]

\[
\left(D^2_{XY} \rho \right) = D_X \left(D_Y \rho \right) - D_{[X,Y]} \rho
\]

respectively. Assuming $R^1(X, Y) = D^2 X Y \rho - D^2 Y X \rho$, we obviously have:

Theorem 3.4: If the second derivative of the normal connection is symmetric, then the curvature tensor of the normal connection of M vanish identically.

If f is umbilical i.e., $A(X) = \rho(X)$ for certain 1-form ρ, then

\[
\left(\nabla_X A \right)_Y = \left(D_X \rho \right)(V) Y, \quad \left(\nabla^2 \right)_{XY} A = \left(D^2_{XY} \rho \right)(V) Z
\]

and

\[
(R(X, Y) A)_Z = \left(R^1(X, Y) \rho \right)(V) Z.
\]

Proposition 3.1: Let $f : (M, \nabla) \to (\bar{M}, \bar{\nabla})$ be a totally geodesic affine immersion, where (M, ∇) is an affine locally product Riemannian manifold of recurrent curvature, say $\bar{\nabla} R = \bar{\phi} \odot \bar{R}$, then we have

\[
A_Y R(X, Y) W = - (R(X, Y) A)_W W - \left(\nabla^2_{YX} A \right)_Y X
\]

\[
+ \left(\nabla^2_{XY} A \right)_Y + \phi(W) \left(\left(\nabla_X A \right)_Y X - \left(\nabla_X A \right)_Y Y \right)
\]

(3.11)

\[
(\nabla W R^1)(X, Y) = \phi(W) R^1(X, Y) V
\]

In particular when f is additionally umbilical then

\[
(3.12)
\]

\[
\rho(V) R(X, Y) W = - \left(R^1(X, Y) \rho \right)(V) W - \left(D^2_{XY} \rho \right)(V)
\]

\[
- \phi(W) \left(D_Y \rho \right)(V) X + \left(D^2_{WX} \rho \right)(V) Y - \phi(W) \left(D_X \rho \right)(V) Y
\]

(3.13)
On Totally Geodesic Affine Immersion

Proof: (3.11) and (3.12) are consequences of the formulae $\bar{\nabla}_X Y = \nabla_X Y$, (3.6) and the assumption $\bar{\nabla} R = \Phi \otimes \bar{R}$. In this case $(R (X, Y) A) Z = (R^1 (X, Y) p) (V) Z$ becomes (3.13).

We shall study the existence of a certain class of f invariant submanifolds in a complex space form of non-null holomorphic sectional curvature.

A proper F invariant submanifold M of a locally product Riemannian manifold M is a F invariant with both distributions \mathbb{V} and \mathbb{V}^T of non-null dimensions. Also M is totally umbilical if there exists a normal vector field L such that the second fundamental form B satisfies $B (X, Y) = g (X, Y) L$, for any vector fields X, Y tangent to M.

Now we propose:

Theorem 3.5: There exists no totally umbilical proper F invariant submanifolds of an elliptic or hyperbolic complex space.

Proof: Suppose there exists a totally umbilical proper F-invariant submanifold M of a complex space form $M (c_1 \neq 0, c_2 \neq 0)$. Let X and Y be two non-null vector field, from \mathbb{V} and \mathbb{D} respectively then, for the normal part of $R (X, F X) Y$, we get $[R (X, F X) Y]_N \neq 0$. On the other hand, since M is totally umbilical, the Codazzi-equations give $[R (X, F X) Y] = g (F X, Y) D_X L - g (X, Y) D_{F X} L = 0$. Thus, we get a contradiction. This completes the proof.

References
