Three Dimensional Landsberg Space with Constant Unified Main Scalar

B.N. Prasad
Department of Mathematics, St. Andrew's College, Gorakhpur, India

T.N. Pandey and A.K. Jaiswal
Department of Mathematics and Stats, D.D.U. Gorakhpur University, Gorakhpur.

(Received April 11, 2004)

Abstract: Certain properties of a three dimensional Landsberg space with constant unified main scalar have been discussed in the present paper. A new scalar K has been introduced and its importance has been shown.

1. Introduction

In 1984 F. Ikeda1 studied the properties of Finsler Spaces satisfying the condition $L^2C^2 = f(x)$, where L is the fundamental function and C is the length of the torsion vector C_i. In his paper2 he considered the condition $L^2C^2 = \text{non-zero constant}$, which is stronger than the corresponding condition considered in the-paper1. A two dimensional Berwald space is an example of such a Finsler space with constant function LC. However in three dimensional Landsberg space the function LC is not always constant. Some properties of three dimensional Finsler space with non-zero constant function LC have been studied by Ikeda3. The function LC has been called the unified main scalar in the case of three dimensional Finsler space. By introducing a scalar T, F. Ikeda has shown that every three dimensional Landsberg space is a Berwald space provided unified main scalar and T-scalar are non-zero constants.

The purpose of the present paper is to discuss some more properties of three dimensional Landsberg space with constant unified main scalar. We have introduced a scalar K which has important role in this paper.

In the three dimensional Finsler space we have three essential scalar fields called main scalars H, I, J and h- and v-connection vectors h_i and v_i. The orthonormal frame field called Moör's frame (l^i, m^i, n^i) plays important role in three dimensional Finsler space4.

2. Scalar Components in Moör's Frame

We consider a three dimensional Finsler space F^3 with the fundamental function $L(x, y)$ and the frame (l, m, n) called Moör's frame of F^3 where l is the normalized supporting element.
i.e. \(l^i = \frac{\nabla_i}{L} \). \(m^i \) is the normalized torsion vector i.e. \(m^i = c/l^c \). \(n^i \) is constructed by \(g_{ij}l^in^j = 0 \), \(g_{ij}m^in^j = 0 \), \(g_{ij}n^in^j = 1 \) and \(g_{ij} \) is the fundamental tensor of \(F^3 \) defined as
\[g_{ij} = \frac{1}{2} \tilde{\partial}_i \tilde{\partial}_j \frac{1}{2}, \tilde{\partial}_j \frac{1}{2} = \frac{\partial}{\partial y^j} \).

In the Moór's frame an arbitrary tensor be expressed in terms of scalar components, for instance a tensor \(T(=T) \) of \((1,2)\) type can be written as
\[T^i_{jk} = T_{a\beta} e_a^i e_{\beta}^j e_{\gamma}^k \]
where \(e_{\varepsilon}^i = l^i \), \(e_{\varepsilon}^i = m^i \), \(e_{\varepsilon}^i = n^i \) and the summation convention is applied to greek indices also. The scalar components \(T_{a\beta} \) are given by
\[T_{a\beta} = T_{a\beta}^i e_{\alpha}^i e_{\beta}^j e_{\gamma}^k \]
From the equation \(g_{ij} e_{\alpha}^i e_{\beta}^j = \delta_{\alpha \beta} \) we have
\[g_{ij} = l^i l^j + m^i m^j + n^i n^j \quad \text{(2.1)} \]

Next the C-tensor \(C_{ijk} = \frac{1}{2} \tilde{\partial}_k g_{ij} \) satisfies \(C_{ijk}l^i = 0 \) and symmetric in \(i,j,k \), therefore if \(C_{a\beta} \) are scalar components of \(L \) \(C_{ijk} \) i.e.
\[LC_{ijk} = C_{a\beta} e_{\alpha}^i e_{\beta}^j e_{\gamma}^k, \]
then we have
\[LC_{ijk} = H m^i m^j m^k - J s_{i\{jk\}} \{ m^i m^j m^k \} + I s_{i\{jk\}} \{ n^i n^j n^k \} + J n^i n^j n^k, \quad \text{(2.2)} \]
where, \(s_{i\{jk\}} \) denote the cyclic interchange of \(i,j,k \) and summation and
\[C_{ijk} = 0, C_{222} = H, C_{333} = -C_{223} = J, C_{233} = I. \quad \text{(2.3)} \]

We shall be using Cartan's connection \(CT = (F^i_j, G^i_j, C^i_{jk}) \) in the following section of this paper. The h- and v- covariant derivatives of a tensor field with respect to \(CT \) are indicated by the short and long lines respectively.

First we have
\[l_{ij} = 0, m_{ij} = n_i n_j, n_{ij} = -m_i n_j, \quad \text{(2.4)} \]
\[Ll_{ij} = h_{ij}, Lm_{ij} = -l_j m_j + n_i n_j, Ln_{ij} = -l_j n_j - m_i n_j, \quad \text{(2.5)} \]
where h_i are components of angular metric tensor, h_i and v_i are component of h and v-connection vectors respectively.

The equation (2.4) and (2.5) may be written as

\begin{align}
e_{\alpha\beta\gamma} &= H_{\alpha\beta\gamma} e_{\gamma\mu} e_{\gamma\nu}, \\
Le_{\alpha\beta\gamma} &= V_{\alpha\beta\gamma} e_{\gamma\mu} e_{\gamma\nu}, \tag{2.6}
\end{align}

where $H_{\alpha\beta\gamma}$ and $V_{\alpha\beta\gamma}$ being fixed are given by.

\begin{align}
(H_{\alpha\beta\gamma}) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & h_\gamma & 0 \\ 0 & -h_\gamma & 0 \end{pmatrix}, \\
(V_{\alpha\beta\gamma}) &= \begin{pmatrix} 0 & \delta_\gamma^2 & \delta_\gamma^1 \\ -\delta_\gamma^2 & 0 & v_\gamma \\ -\delta_\gamma^1 & -v_\gamma & 0 \end{pmatrix}, \tag{2.8}
\end{align}

where h_i and v_i are scalar components of h- and v-connection vectors h_i and v_i, respectively, i.e.

\begin{align}
h_i &= h_\gamma e_{\gamma\mu}, \\
v_i &= v_\gamma e_{\gamma\mu}. \tag{2.9}
\end{align}

The first scalar component v_1 of v-connection vector v_i vanishes identically.

If $T_{\alpha\beta\gamma\delta}$ be scalar components of T_{ijkh} then we have

\begin{align}
T_{\alpha\beta\gamma\delta} &= (\delta_\gamma^k T_{\alpha\beta\gamma}) e_{\delta\mu}^k + T_{\mu\beta\gamma} H_{\mu\gamma\delta} + T_{\alpha\mu\gamma} H_{\mu\gamma\delta} + T_{\alpha\beta\mu} H_{\mu\gamma\delta}, \tag{2.10}
\end{align}

where, $\delta_\gamma^k = \delta_\gamma^k - G^i_k \delta_i$

Similarly if $T_{\alpha\beta\gamma\delta}$ be scalar component of $L T_{ijkh}$ then

\begin{align}
T_{\alpha\beta\gamma\delta} &= L(\delta_\gamma^k T_{\alpha\beta\gamma}) e_{\delta\mu}^k + T_{\mu\beta\gamma} V_{\mu\gamma\delta} + T_{\alpha\mu\gamma} V_{\mu\gamma\delta} + T_{\alpha\beta\mu} V_{\mu\gamma\delta}. \tag{2.11}
\end{align}

The scalar components $C_{\alpha\beta\gamma\delta}$ of $L C_{ijhk}$ are given by

\begin{align}
C_{1\beta\gamma\delta} &= 0, \\
C_{2226} &= H_{\delta} - J_{\delta} + 3J_{\delta}, \\
C_{2236} &= -J_{\delta} + (H - 2I) h_6, \\
C_{2336} &= I_{\delta} - 3J_{\delta}, \\
C_{3336} &= J_{\delta} + 3J_{\delta}, \tag{2.12}
\end{align}

where H_{δ} for instance is the h-scalar derivative of H i.e. $H_{\delta} = (\delta_{\beta}^i H) e_{\delta}^i$.

Three Dimensional Landsberg Space

79
On the other hand, the scalar components $C_{\alpha \beta \gamma \delta}$ of $LC_{\alpha \beta \gamma \delta}$ is completely symmetric therefore it gives

\begin{align}
(H-2l)v_2 - 3Jv_3 &= J_2 + H_3, \\
3Jv_2 + (H-2l)v_3 &= I_2 = J_3, \\
3Jv_2 + 3Jv_3 &= -J_2 + I_3.
\end{align}

(2.13)

We quote the following theorem which has been proved by M. Matsumoto in page 197.

Theorem (2.1). The h-curvature tensor $R_{\alpha \beta \gamma \delta}$ of CT in any three dimensional Finsler space is written in the form

\begin{equation}
R_{\alpha \beta \gamma \delta} = Q_{(\alpha \beta \gamma \delta)} + g_{\alpha \beta} L_{\gamma \delta} + g_{\gamma \delta} L_{\alpha \beta},
\end{equation}

(2.14)

where $L_{\alpha \beta}$ is defined as

\begin{equation}
L_{\alpha \beta} = R_{\alpha \beta} - \frac{R}{4} R_{\gamma \delta}.
\end{equation}

(2.15)

$R_{\alpha \beta}$ is the h-Ricci tensor defined by $R_{\alpha \beta} = R^h_{\alpha \beta}$ and $R = R_{\alpha \beta} g^{\alpha \beta}$.

Here $Q_{(\alpha \beta \gamma \delta)}$ denote the interchange of indices α, β and subtraction.

The scalar component $L_{\alpha \beta}$ of $L_{\alpha \beta}$ are given by

\begin{equation}
L_{\alpha \beta} = \frac{1}{2} \delta_{\alpha \beta} \ast R_{\gamma \delta} = \ast R_{\beta \alpha}.
\end{equation}

(2.16)

where $\ast R_{\alpha \beta}$ are scalar components of $\ast R_{\alpha \beta}$ and $\ast R_{\alpha \beta}$ is given by $R_{\alpha \beta \gamma \delta} = \epsilon_{\alpha \beta \gamma \delta} \ast R_{\gamma \delta}$.

3. **Constant Unified Main Scalar**

Contracting (2.2) with $g^{\alpha \beta}$, we get

\begin{equation}
LC_i = (H+1)m_i,
\end{equation}

(3.1)

which shows that the unified main scalar LC_i is equal to $H+1$.

We now assume that the unified main scalar LC_i is non-zero constant then by addition of first and third equations of (2.13) we get, $(H+1)v_2 = 0$, which gives $v_2 = 0$. Hence we have the following:
Proposition (3.1). In a three-dimensional Finsler space with non-zero constant unified main scalar the v-connection vector v_i may be written as $v_i = v_j n_i$.

A Finsler space is called a Landsberg space, if the Berwald connection Γ is h-metrical which is equivalent to $P_{ijk} = 0$. Since

$$P_{ijk} = Q_{(ij)} \{ C_{ijk} + C_{ij} P_{nk} \},$$

$$P_{ijk} = Q_{(ij)} \{ \dot{C}_{jk} P_{ik} + P_{khr} C_{ij} \},$$

we have the following.

Proposition (3.2). A Finsler space is a Landsberg space if and only if C_{ijk} is completely symmetric tensor.

If F^3 is a three-dimensional Landsberg space then $C_{aibj} = 0$ and in view of proposition (3.2) it follows that $C_{aibj} = C_{abji}$ which gives

$$\begin{aligned}
(a) & \quad H_j + 3Jh_j = 0 \\
(b) & \quad -J_j +(H-2i)h_j = 0 \\
(c) & \quad I_j - 3Jh_j = 0 \\
(d) & \quad J_j + 3Jh_j = 0
\end{aligned}$$

(3.4)

$$\begin{aligned}
(a) & \quad (H-2i)h_j - 3Jh_j = J_2 + H_3 \\
(b) & \quad 3Jh_j + (H-2i)h_j = I_2 + J_3 \\
(c) & \quad 3Jh_j + 3Jh_j = -J_2 + I_3.
\end{aligned}$$

(3.5)

Now, if unified main scalar LC($-H+1$) is non-zero constant then addition of (3.4) b and (3.4) d gives $h_j = 0$ and hence $H_j = I_j = J_j = 0$ further addition of (3.5) a and (3.5) c gives $h_j = 0$. Hence from (3.5) it follows that

$$-3Jh_j = J_2 + H_3, \quad (H-2i)h_j = I_2 + J_3.$$

(3.6)

If all the main scalar H, I, J are constant then from (3.6) it follows that either h_j is equal to zero or $J = 0$ and $H = 2i$. Summarizing these results we get,

Theorem (3.1). In a three-dimensional Landsberg space with non-zero constant unified main scalars we have $h_j = I_j = J_j = H_j = 0$.

Theorem (3.2). In a three-dimensional Landsberg space with non-zero constant main scalars either h-connection vector vanishes or $J = 0$ and $H = 2i$.
The h-covariant derivative of (3.1) gives $L C_{ij} = (H+I)n_i h_j$, where we have used the equation (2.4) and the fact that $L_k = 0$ and $H+I$ is constant. Since in a Landsberg space C_{ij} is symmetric tensor, the above equation gives that the h-connection vector h_i is parallel to n_i and we have the following:

Theorem (3.3). If the unified main scalar of three dimensional Landsberg space F^3 is non-zero constant then C_{ij} and h-connection vector h_i are represented by

$$C_{ij} = L^1 K n_i n_j, \quad h_i = (H+I)^{-1} K n_i,$$

respectively.

The function K which occurs in theorem (3.3) will be called K-scalar and is given by $K = (H+I)h_3$.

Next we consider the Ricci identity $^4 C_{i j k} - C_{i k j} = -C_{i} R'_{j k} - C_{i k} R'_{j k}$ substituting equation (2.14) into this identity and paying attention to equation (2.4) and theorem (3.3) we get,

$$L^1 \left[K_n_j - K_i n_k - K^2 (H+I)^{-1} (m_j n_k - m_k n_j) \right] n_i,$$

$$= -C_{i} (g_{i k} L'_{k} + \delta'_{i k} L_{j} - g_{i k} L'_{j} - \delta'_{i k} L_{j}) - C_{i k} (y_{i k} L'_{j} + \delta'_{i k} L_{j} - y_{i j} L'_{j} - \delta'_{i j} L_{j}).$$

where we have used the fact that $R_{j k} = g^{i h} R_{h j k} y^h = R_{h j k} y^h$ and $L_n = g^{i h} L_{j k}$.

Since $C_{i} = C_{m i}$ in view of (2.5) and proposition (3.1) its v-covariant derivatives gives

$$C_{i} = C L^1 [y_j n_i - m_j] n_i.$$

Since $L\alpha\beta$ are scalar components of $L_{\alpha\beta}$ and $L_{\alpha\beta}$ are given by equation (2.16) we may write

$$L_{ij} = \frac{1}{2} (\ast R_{22} + \ast R_{33} - \ast R_{11}) n_i n_j + \frac{1}{2} (\ast R_{11} + \ast R_{33} - \ast R_{22}) m_i m_j$$

$$+ \frac{1}{2} (\ast R_{11} + \ast R_{22} - \ast R_{33}) n_i n_j - \ast R_{22} l_i l_j$$

$$- \ast R_{11} l_i l_j - \ast R_{33} m_i m_j - \ast R_{22} n_i n_j.$$

Now we assume that K is constant then from (3.7), (3.8) and (3.9) we get

$$
\begin{align*}
(a) \quad K^2 &= - (H+I)^2 (\ast R_{11} + \ast R_{22}), \\
(b) \quad \ast R_{12} + \ast R_{22} y_3 &= 0, \\
(c) \quad \ast R_{13} + \ast R_{33} y_3 &= 0.
\end{align*}
$$

(3.10)
From these results, we have the following:

Theorem (3.4). Let F^3 be a three dimensional Landsberg space. If the unified main scalar of F^3 is non-zero constant and the K-scalar of F^3 is constant, then $(*R_{ij} + v_j R_{ij})$ is constant and the equation (3.10) holds.

Now we consider the Ricci identity:

$$C_{i,j,k} - C_{i,k,j} = - C_{r s} P_{r s}^{i} - C_{i,j} C_{i,j}^{r} - C_{i,j} P_{i,j}^{r}.$$

If F^3 is a Landsberg space then $P_{i,j}^{i} = 0 = P_{i,j}^{j}$. Therefore, in view of equation (2.2) and theorem (3.3), the above Ricci identity reduces to

$$C_{i,j,k} - C_{i,k,j} = L^{-1} K \{ J n_{j} n_{m} m_{k} - J n_{j} m_{k} m_{j} + n_{j} n_{m} n_{k} - J n_{j} n_{m} n_{k} \}.$$

(3.11)

Now assuming the K-scalar to be a constant, in view of equations (2.4), (2.5), (3.8) and theorem (3.3), the L.H.S. of equation (3.11) may be written as

$$C_{i,j,k} - C_{i,k,j} = - L^{-2} K [n_{j} n_{l} n_{k} + n_{j} n_{k} n_{l} + n_{k} n_{l} n_{j} + n_{j} n_{l} n_{k} + n_{j} n_{l} n_{k} - (H + 1) L^{-2} n_{j} n_{k} n_{l}].$$

(3.12)

Comparing equations (3.11) and (3.12), we get

$$\begin{align*}
(H+I)v_{2,2} &= -LKJ \\
(H+I)v_{2,3} &= LKJ \\
(H+I)v_{3,2} &= LKI - Ky_j \\
(H+I)v_{3,3} &= LKJ \\
(H+I)v_{3,3} &= -K
\end{align*}$$

(3.13)

Since $v_{2,2} = 0$ and $h_j = (H+I)^{-1} K$ equation (3.13) gives

$$J = 0, \quad v_{3,3} = 0, \quad v_{3,3} v_{2,3} = h_j v_j.$$

Hence we have the following:

Theorem (3.5). Let F^3 be a three dimensional Landsberg space. If the unified main scalar of F^3 is non-zero constant and the K-scalar of F^3 is constant then $J = 0$, $v_{3,3} = 0$, $v_{3,3} v_{2,3} = h_j v_j$.

$v_{2,3} = h_j v_j$.
References