The Propagation of Flare Generated Shockwaves in Self-Gravitating Solar Atmosphere

S. N. Ojha
Department of Mathematics, S. C. College Ballia (U.P.)

Awaneesh Jee Srivastava
S. R. M. G. P. C., Lucknow (U.P.)
Email: awaneesh_jeesrivastava@yahoo.com

(Received April 27, 2013)

Abstract: The effects of an interplanetary magnetic field on the propagation of the flare generated shock wave in a non-uniformly distributed solar self-gravitating atmosphere are investigated by using an approximate analytic method of Whitham. The expressions for the velocity of shock wave and for the other flow variables behind weak and strong shocks are derived and discussed.

Key Words: Shockwaves, Solar Atmosphere, Fundamental equation for spherically symmetric flow of a self graviting atmosphere in the presence of magnetic field.

Mathematics Subject Classification: 2010-76L05.

1. Introduction

Recent observations have confirmed that a large amount of coronal mass is ejected into the interplanetary space during the solar flare activity. As a result of this interplanetary shock waves that propagate outwards from the sun into the interplanetary space are generated (Dryer and Wu1, Smith\textit{et al}2, Yeh3, Hundhausen4, Maxwell & Dryer5, Berlaga6). The theoretical studies of the flare generated shock wave propagation into the interplanetary space are treated by Parker7, Korobeinikov8, Summers9, Rosenau and Frankenthal10, Low11-14, Ojha and Tiwari15 and many others by using the method of self- similarity. Numerical solutions have also been obtained to discuss the propagation of flare associated shock waves with (Steinolfson\textit{et al}16) or without (Hundhassen and Gentry17), magnetic field.

Bird18 constructed a model of the outer solar atmosphere regarding it as a shock heated atmosphere based on the hypothesis that any equilibrium state of such an atmosphere would be such that the shock strength remained constant and determine the effects produced by the variation in properties of
a gravitational atmosphere on a spherical shock wave propagating within it
by using Whitham\(^{19}\) approximate analytic method. Expressions are also
presented for the rate of change of the shock strength with the distance with
and without steady mass motion and with ordinary distribution of
temperature and compositions. The special cases of weak and strong shocks
in adiabatic and isothermal atmosphere are treated in some detail. Ojha and
Singh\(^{20}\) have extended the analysis of Bird by taking into account the
rotation and non-uniform distribution of ambient solar atmosphere
respectively. In all the above studies the effects due to interplanetary
magnetic field are neglected.

Tam and Yousefian\(^{21}\) investigated the effect of the interplanetary magnetic
field on the propagation of solar flare generated interplanetary shock waves
and found that the effect of the magnetic field on the shock speed is
unimportant for strong shocks in comparison to the weak shocks and
suggested that the model without magnetic field gives sufficiently accurate
numerical results for the propagation of the shock waves. Since the magnetic
field pressure and plasma pressure are comparable on the earth’s orbit, the
consideration of the effect of magnetic field is important. Therefore our aim
here is to investigate the shock wave propagation through non-uniformly
distributed self-gravitating solar atmosphere in presence of interplanetary
magnetic field.

On propagating outwards from the sun, the interplanetary shock will
experience a changing environment and as a result of this it generates
unsteady disturbances behind it. Under these circumstances Whitham\(^{19}\)
method for treating the propagation of shock waves through the regions of
non-uniform flow is applicable. Expressions for the velocity of the
shock, fluid pressure, density and fluid velocity are derived behind the weak
and strong shock considering the cases of weak and strong magnetic field
separately.

2. Equations of Motion And Shock Conditions

Fundamental equation for spherically symmetric flow of a self
gravitating atmosphere in the presence of magnetic field are (c.f. Lee and
Chen\(^{22}\), Tam and Yousefian\(^{21}\), Rosenau and Frankenthal\(^{10}\).

\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial r} + \rho \left(\frac{\partial u}{\partial r} + \frac{2u}{r} \right) = 0
\]

(2.1)

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{H}{\rho} \frac{\partial H}{\partial r} + \frac{H^2}{\rho r} + \frac{GM}{r^2} = 0
\]

(2.2)
(2.3) \[\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial r} + H \left(\frac{\partial u}{\partial r} + \frac{u}{r} \right) = 0 \]

(2.4) \[\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial r} - a^2 \left(\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial r} \right) = 0 \]

(2.5) \[\frac{\partial M}{\partial r} = 4\pi r^2 \]

where \(r \) is the radial co-ordinate at time \(t \) and \(u, p, \rho, H \) and \(M \) are the radial component of the partial velocity, pressure, density, magnetic field and the mass inside a sphere of radius \(r \) respectively, \(a \) is the speed of sound.

Suppose the distribution of the ambient density and magnetic field of the solar atmosphere are given as \(\rho_c r^{-w} \) and \(h_c r^{-m} \) respectively. Thus in case of hydrostatic equilibrium;

(2.6) \[p_0 = \left\{ \frac{2\pi \rho_c^2 G}{(w-1)(3-w)} - \left(\frac{w-2}{w-1} \right) \frac{h_c^2}{2} \right\} r^{-2m} \]

or

(2.7) \[p_0 = p_c r^{-2m}, \quad p_c = \left\{ \frac{2\pi \rho_c^2 G}{(w-1)(3-w)} - \left(\frac{w-2}{w-1} \right) \frac{h_c^2}{2} \right\} \]

where \(\rho_c, h_c \) and \(p_c \) are constants and \(m = w - 1 \).

(2.8) \[M_0 = \frac{4\pi \rho_c}{(3-w)} r^{(3-w)} \]

which gives \(w < 3 \) and therefore \(m < 2 \), in particular, when \(w = 2, m = 1 \).

The speed of sound \(a_0 \) is given by

(2.9) \[a_0 = a_c r^{\frac{2-w}{2}}, \quad a_c^2 = \frac{\gamma p_c}{\rho_c} \]

The magnetohydrodynamic shock condition may be written as (Whitham19)
\(\rho = \rho_0 N \) \hspace{1cm} (2.10)

\(H = H_0 N \) \hspace{1cm} (2.11)

\[u = \left(\frac{N-1}{N} \right) U \] \hspace{1cm} (2.12)

\[p = p_0 \left\{ \frac{(N+1) + \gamma(N-1)}{(N-1)^3(\gamma-1)} + \frac{1}{\beta_0} \right\} \left\{ \frac{(N-1)^2(\gamma-1)}{(\gamma+1) - (\gamma-1)N} \right\} \] \hspace{1cm} (2.13)

\[U^2 = \frac{2N \left\{ \frac{2-\gamma}{\gamma} N + 1 \right\} a_0^2}{(\gamma+1) - N(\gamma-1)} - \frac{\gamma}{(2-\gamma)N + \gamma} + \frac{1}{\beta_0} \] \hspace{1cm} (2.14)

where the quantities with suffix 0 and without suffix define values of the quantities immediately ahead and behind the shock, \(U \) is the shock velocity, \(a_0 \) is the sound speed ahead of the shock and \(\beta_0 \) is defined as the parameter for the strength of magnetic field ahead of the shock where

\[\beta_0 = \frac{2p_0}{H_0^2} = \frac{2p_c}{h_c^2} \] \hspace{1cm} (2.15)

With the help of (2.7) and (2.15), we get

\[2\pi p_c G/3_{w} = \frac{p_c}{\rho_c} \left(\frac{\beta_0 (w-1) + (w-2)}{\beta_0} \right) \] \hspace{1cm} (2.16)

3. Discussions

For diverging shocks, the characteristic form of the system of equations (2.1) – (2.4) are (Whitham\(^{19}\)).

\[dp + HdH + \rho cdud + \frac{2\rho cu}{(u + c)} \frac{dr}{r} + \frac{\rho Gmc}{(u + c)} \frac{dr}{r^2} = 0 \] \hspace{1cm} (3.1)

where

\[c^2 = a^2 + b^2 = \frac{\gamma p}{\rho} + \frac{H^2}{\rho} \] \hspace{1cm} (3.2)

Weak Shocks
For very weak shock we can take N as

$$\frac{\rho}{\rho_0} = N = 1 + \alpha \quad \text{where } \alpha << 1$$

For weak magnetic field i.e. where for very high ρ_0, the shock conditions take the forms

$$\rho = \rho_0(1 + \alpha), \; H = H_0(1 + \alpha), \; u = a_0 \alpha, \; p = p_0(1 + \gamma \alpha)$$

and

$$U = \left(1 + \left(\frac{\gamma + 1}{4}\right) \alpha\right) a_0$$

Substituting (3.4) in (3.1), we have

$$\left(2 + \frac{2}{\gamma \beta_0^2}\right) d\alpha + \left(\frac{dp_0}{p_0} + \frac{da_0}{a_0} + \frac{2dr}{r}\right) \alpha = 0$$

Substituting dp_0 and da_0 in (3.5)

$$\frac{d\alpha}{\alpha} = -\left(\frac{10 - 5w}{4}\right) \left(\frac{\gamma \beta_0}{1 + \gamma \beta_0}\right) \frac{dr}{r}$$

or

$$\alpha = K_1 r^{-n_1}, \; n_1 = \left(\frac{10 - 5w}{4}\right) \left(\frac{\gamma \beta_0}{1 + \gamma \beta_0}\right) = \frac{5}{4} \left(2 - w\right)$$

Thus, the flow variables and velocity of the shock are not affected by weak magnetic field. When $w = 2$, α is proportional to r.

For strong magnetic field i.e. for very small β_0 the shock conditions take the forms

$$\rho = \rho_0(1 + \alpha), \; H = H_0(1 + \alpha), \; u = \left(\frac{2}{\gamma \beta_0^2}\right)^{\frac{1}{2}} a_0 \alpha, \; p = p_0(1 + \gamma \alpha)$$

and
\[
U = \left(1 + \frac{3}{4} \alpha \right) a_0 \sqrt{\frac{2}{\gamma \beta_0}}
\]

Substitution of (3.8) in (3.1) gives

\[
(3.9) \quad \left(1 + \frac{4}{\gamma \beta_0} \right) \frac{d\alpha}{\alpha} + \left(\frac{dp_0}{p_0} + \frac{2}{\gamma \beta_0} \left(\frac{da_0}{a_0} + \frac{2dr}{r} \right) \right) = 0
\]

Substituting the value of \(\frac{dp_0}{p_0} \) and \(\frac{da_0}{a_0} \) we get

\[
(3.10) \quad \frac{d\alpha}{\alpha} = -\left(\frac{6 - w + 2\gamma \beta_0 (w - 1)}{\gamma \beta_0 + 4} \right) \frac{dr}{r}
\]

Integrating we get

\[
(3.11) \quad \alpha = K_2 r^{-n_2} , \quad n_2 = \frac{(6 - w) + 2\gamma \beta_0 (w - 1)}{\gamma \beta_0 + 4}
\]

where \(K_2 \) be a constant

Thus, in this case,

\[
(3.12) \quad \rho = \rho_0 \left(1 + K_2 r^{-n_2} \right) , \quad u = \sqrt{\frac{2}{\gamma \beta_0}} K_2 r^{-n_2} a_0
\]

\[
p = p_0 \left(1 + \gamma K_2 r^{-n_2} \right) , \quad H = H_0 \left(1 + K_2 r^{-n_2} \right)
\]

\[
U = a_0 \left(1 + \frac{3K_2 r^{-n_2}}{4} \right) \sqrt{\frac{2}{\gamma \beta_0}}
\]

Thus, the strong magnetic field affects significantly the velocity of the shock and the flow variables behind it.

Strong Shocks

When the gas pressure is much greater than magnetic pressure i.e. when \(\beta_0 \) is very high,
\[N = \frac{\gamma + 1}{\gamma - 1} \] For strong shocks and the solar atmosphere may be regarded as independent of magnetic field.

When magnetic pressure is much greater than gas pressure i.e. when \(\beta_0 \) is very small, the shock conditions in terms of \(N \) and Shock velocity may be written as,

\begin{align*}
(3.13) \quad & \rho = \rho_0 N \\
(3.14) \quad & H = H_0 N \\
(3.15) \quad & u = \left(\frac{N - 1}{N} \right) U \\
(3.16) \quad & p = X \frac{U^2}{a_0^2} p_0 + Lp_0
\end{align*}

where

\[X = \frac{\gamma(\gamma - 1)(N - 1)^3}{2N(2 - \gamma)N + \gamma} \]

and

\[L = \frac{(\gamma + 1)N - (\gamma - 1)}{(\gamma + 1) - (\gamma - 1)N} - \frac{\gamma(\gamma - 1)(N - 1)^3}{(2N - \gamma)(N - 1)N + (\gamma + 1)N - (\gamma - 1)} \]

Now

\[c^2 = \frac{\rho_H^2}{\rho} + \frac{H^2}{\rho} = \left\{ \frac{X}{N} + \left(\frac{L}{\gamma N} + \frac{2N}{\gamma \beta_0} \right) \frac{a_0^2}{U^2} \right\} U^2 \]

Since for strong shocks \(U^2 \gg a_0^2 \), we may take

\begin{align*}
(3.20) \quad & c = U \sqrt{\frac{X}{N}} \\
(3.21) \quad & u + c = \left(\frac{N - 1}{N} \right) U + U \sqrt{\frac{X}{N}} \\
(3.22) \quad & dp = XU^2 \frac{dp_0}{a_0^2} + \frac{Xp_0}{a_0^2} dU^2 - 2Xp_0 U^2 \frac{da_0}{a_0^3} + Ldp_0
\end{align*}
\((3.23) \quad H_d H = N^2 \frac{dp_0}{\beta_0} \)

\((3.24) \quad \rho c du = \rho_0 (N-1) \sqrt{\frac{X}{N}} U du \)

\((3.25) \quad \rho c GM = \rho_0 N U \sqrt{\frac{X}{N}} GM \)

\((3.26) \quad M = \frac{4\pi \rho_c r^{3-w}}{3-w} \)

Substituting (3.20) – (3.26) in (3.1) we have

\((3.27) \quad \left(\frac{X}{\gamma} + \frac{(N-1)}{2} \sqrt{\frac{X}{N}} \right) dU^2 + \left(\frac{X}{\gamma} \frac{dp_0}{p_0} - 2X \frac{da_0}{a_0} + \frac{2(N-1)}{(N-1)+\sqrt{XN}} \frac{dr}{r} \right) U^2 \)

\[+ \left[\left(L + \frac{N^2}{\beta_0} \right) \frac{dp_0}{\rho_0} + \frac{GMN\sqrt{XN}}{(N-1)+\sqrt{XN}} \frac{dr}{r^2} \right] = 0 \]

Substituting the values of \(\frac{dp_0}{p_0}, \frac{da_0}{a_0}, \frac{dp_0}{\rho_0} \) and \(M_0 \) we get

\((3.28) \quad \frac{d}{dr} U^2 + P \frac{U^2}{r} + Q r^{(1-w)} = 0 \)

where

\((3.29) \quad P = \frac{\left(2(N-1) - \frac{\omega}{\gamma} \right) X}{\left((N-1) - \sqrt{XN} \right) \left[\frac{X}{\gamma} + \frac{(N-1)}{2} \sqrt{\frac{X}{N}} \right]} \)

\((3.30) \quad Q = \left[2 \left(L + \frac{N^2}{\beta_0} \right) \frac{p_c}{\rho_c} \frac{(1-w)}{3-w} + \frac{G 4\pi \rho_c N \sqrt{XN}}{(N-1)+\sqrt{XN}} \right] \)

\[\left[\frac{X}{\gamma} + \frac{(N-1)}{2} \sqrt{\frac{X}{N}} \right] \]
Integrating (3.28) we get

\[U^2 = -\left(\frac{Q}{P - w + 2} \right) r^{2-w} + Kr^{-P} \]

where \(K \) is integration constant.

Expressions for the velocity density and pressure immediately behind the shock may be written as

\[u = \left(\frac{N - 1}{N} \right) \left[-\left(\frac{Q}{P - w + 2} \right) r^{2-w} + Kr^{-P} \right]^{\frac{1}{2}} \]

\[\rho = \rho_0 N \]

\[p = \left[\frac{X\rho c}{\gamma} \left\{ Kr^{-(P+w)} - \left(\frac{Q}{P - w + 2} \right) r^{2(l-w)} \right\} + Lp_c r^{2(l-w)} \right] \]

4. Conclusions

It is obvious from the above expressions that the density distribution and magnetic field distribution in ambient solar atmosphere affect significantly the velocity of shock and flow variables behind the shock waves.

References

6. L. F. Berlaga; *Space science Rev.*, 17 (1975) 827.

21. C. K. W. Tam and V. Yousefian; Effects of interplanetary magnetic field on the propagation of flare-generated interplanetary shock waves *J.Geophysical Research, 77(1)* (1972) 234.