Properties of Q^* Sets↑

N. Lalitha and M. Murugalingam
Department of Mathematics, Thiruvalluvar College
Papanasam 627425, Tamilnadu, India
E-Mail: msu_lalitha@yahoo.com; mmmurugalingam@yahoo.com

(Received June 14, 2011)

Abstract: In this paper, we study the properties of Q^* open sets. In particular, we investigate the properties and theorems in affine spaces and irreducible spaces. Also we define Gd set, contra Q^* closure and study some of these properties.

1. Introduction

We defined Q^* closed sets and Q^* open sets in an affine space↑ in the year 2010. Affine space is a topological space which characterizes most of the geometrical objects.

We need the following definitions:

Definition 1.1. Let (X, T) be a topological space. Let $A \subset X$. A is said to be Q^*closed if A is closed and $\text{int} \ A = \Phi$. Then the complement of Q^* closed set is Q^* open.

Definition 1.2↑. Let C^n be a complex n–space. Let I be a collection of some complex polynomials of C^n. Let $V_I = \{x \in C^n/ f (x) = 0 \text{ for all } f \in I\}$. That is common zero set of I. Then V_I is called affine algebraic variety.

Definition 1.3↑. The set of all complements of affine algebraic varieties satisfies the four axioms defining a topology on C^n. This topology is called Zariski topology on C^n.

Definition 1.4↑. The set C^n considered as a topological space with its Zariski topology is called affine n–space. We denote this affine n-space by A^n.

2. Q^* Open Sets in Various Spaces

In this section we discuss the properties of Q^* open sets in some particular spaces namely affine spaces and irreducible spaces.

Theorem 2.1. In A^n, every non-empty open set is Q^* open set.

Proof. Let U be any non-empty open set with respect to Zariski topology. Let $U \neq X$. The $U = V_{I_1}^C$, for some I_1, where I_1 has at least one non-zero polynomial. Let G be any open set. Let $G \neq X$. Then $G = V_{I_2}^C$, for some I_2 where I_2 has at least one nonzero polynomial.

Now $U \cap G = V_{I_1}^C \cap V_{I_2}^C$. Then $U \cap G = (V_{I_1} \cup V_{I_2})^C$. Therefore $U \cap G = (V_{I_1I_2})^C$ since I_1I_2 has at least one nonzero polynomial, $(V_{I_1I_2})^C \neq \Phi$. Therefore $U \cap G \neq \Phi$. U intersects every nonempty open set. Therefore U is dense. Hence every nonempty open set is Q^* open set in A^n.

Definition 2.2. A topological space X is called irreducible if for any decomposition $X = A_1 \cup A_2$ with closed subsets $A_i \subseteq X$ $(i = 1, 2)$ then we have $X = A_1$ or $X = A_2$.

A subset X' of a topological space X is called irreducible if X' is irreducible as a subspace.

Example 1. Let $X = \{1, 2, 3\}$ and $\tau = \{\Phi, \{1\}, \{1, 2\}, X\}$. Closed sets are Φ, $\{2, 3\}$, $\{3\}$, X. Then X is irreducible.

Example 2. Let $X = \mathbb{N}$ and $\tau = \{\Phi, \{1\}, \{1, 2\}, \ldots, X\}$ Then X is irreducible.

Example 3. Let $X = [1,100]$. Let $U_a = [1,a]$ and $\tau = \{U_a / a \in X\}$. Then X is irreducible.

Lemma 2.3. The topological space X is irreducible if and only if every nonempty open set is Q^* open.

Proof. Let X be irreducible. Let U be any nonempty open set. If $U = X$ then nothing to prove. Let $U \neq X$. Then $cl U \neq X$. If possible suppose that U is not Q^* open. Then there exits an open set V such that $U \cap V = \Phi$. This implies $U^C \cap V^C = X$, where U^C and V^C are proper closed sets. This is a contradiction to X is irreducible.

Conversely, suppose that every open set is Q^* open. We claim that X is irreducible. Suppose X is reducible. Then $X = A \cup B$, where A and B are proper nonempty closed sets. This implies $A^C \cap B^C = \Phi$. Then A^C is not dense. Then A^C is an open set but not Q^* open, a contradiction. Hence X is irreducible.

Theorem 2.4. Let (X, τ) be a topological space. Let $W \subset X$. Every nonempty open set of W is Q^* open in W if and only if every nonempty open set of $cl W$ is Q^* open in $cl W$.

Proof. Let every nonempty open set of W be Q* open set in W. We claim that every nonempty open set of cl W is Q* open in cl W.

Let A be any nonempty open set in cl W. Then A \(\cap \) W is open in W. By hypothesis A \(\cap \) W is dense in W. It is enough to prove that every open set intersects A. Let U be any open set of cl W. Take \(x \in U \). Now \(x \in cl W \).

Therefore every open set of x intersects W.

Also U \(\cap \) W is a nonempty open set in W. Since A \(\cap \) W is dense in W, (A \(\cap \) W) \(\cap \) (U \(\cap \) W) \(\neq \) \(\Phi \). This implies A \(\cap \) U \(\neq \) \(\Phi \). Hence A is dense in cl W and hence A is Q* open in cl W.

Conversely, suppose that every nonempty open set of cl W is Q* open in cl W. We claim that every nonempty open set of W is Q* open in W.

Let U be any nonempty open set of W. Then there exists an open set G in cl W such that U = G \(\cap \) W. By hypothesis G is Q* open in W. That implies G \(\cap \) W is Q* open in W. Therefore U is Q* open in W. Hence the theorem.

Theorem 2.5. Let f: \(\mathbb{C}^n \rightarrow \mathbb{C} \). Let \(A \subset \mathbb{C}^n \). Then \(x_0 \in cl A \), for any \(x_0 \) if and only if f is identically zero in A implies \(f(x_0) = 0 \).

Proof. Let \(x_0 \in cl A \) and f be identically zero in A.

Let I = \{f\}. Since f is identically zero in A, A \(\subset \) V_1. Since V_1 is closed, cl A \(\subset \) V_1. Since \(x_0 \in cl A \subset V_1 \), f(\(x_0 \)) = 0. Conversely, let V_1 be any closed set containing A. We claim that \(x_0 \in V_1 \). We have V_1 = \{x \in \mathbb{C}^n/ f(x) = 0, \forall f \in I\}. Since A \(\subset \) V_1, f(x) = 0 \(\forall x \in A, \forall f \in I \). Therefore f(\(x_0 \)) = 0 \(\forall f \in I \).

Hence \(x_0 \in V_1 \). But cl A is the smallest closed set containing A. Therefore \(x_0 \in cl A \). Thus the Lemma.

Theorem 2.6. If A is Q* open then there exists I such that \(f(A^c) = 0 \) \(\forall f \in I \) and \(f(A) = 0 \) implies \(f \equiv 0 \).

Proof. Let A be Q* open. Then \(A^c \) is closed and cl A = X. Then there exists I such that V_1 = \(A^c \) and cl A = X. If \(x \in V_1 = \) \(A^c \), then f(\(x \)) = 0 \(\forall f \in I, x \in A^c \). Therefore f(\(A^c \)) = 0 \(\forall f \in I \). Let us take f(\(A \)) = 0. We claim that f \(\equiv 0 \). Let \(x_0 \in cl A \). Since f(\(A \)) = 0 \(\forall x \in A \) and by Lemma (2.5), f(\(x_0 \)) = 0. Therefore f(\(x \)) = 0 \(\forall x \in cl A \). But cl A = X. Therefore f(\(x \)) = 0 \(\forall x \in X \). Hence f \(\equiv 0 \).

3. General Properties

Let \((X, \tau)\) be a topological space. We have proved that the collection of all Q* open sets together with \(\Phi \) is a topology \(\tau \). Let \(\tau_1 = \tau_{O^*} \). We find \((\tau_1)_{O^*}\), which is denoted by \(\tau_2 \) and so on.
Theorem 3.1. Let \((X, \tau)\) be a topological space. Then the union of all proper open sets is \(Q^*\) open.

Proof. Let \(A = \bigcup A_i\), where \(A_i\) is proper open set (with respect to \(\tau\)). Clearly \(A\) is open. Always \(\text{cl } A \subseteq X\). We claim that \(X \subseteq \text{cl } A\). Let \(x_0 \in X\). Let \(U\) be any open set containing \(x_0\). Therefore \(U \cap A - \{x_0\} \neq \emptyset\). Therefore \(x_0 \in \text{cl } A\). Then \(\text{cl } A = X\). Hence \(A\) is \(Q^*\)open.

Result 3.2. Let \((X, \tau)\) be a topological space. Let \(A\) be union of all proper open subsets of \(X\). (Let \(\tau_{Q^*}\) denote the collection of all \(Q^*\)open sets with respect to \(\tau\)). If \(\tau_1 = \tau_{Q^*}, \tau_2 = (\tau_1)_{Q^*}\) etc, then \(A \in \tau_i, \forall i = 1,2,\ldots\)

Proof. By Theorem 3.1, \(A\) is \(Q^*\)open. Let \(\tau_1 = \tau_{Q^*}\). Clearly \(A \in \tau_1\). If \(B \in \tau_1(B\) is \(Q^*\)open with respect to \(\tau)\) then \(B\) is open in \(\tau\). Then \(B \subseteq A\). Then union of all proper open sets with respect to \(\tau_1\) is \(A\). Therefore \(A\) is \(Q^*\)open with respect to \(\tau_1\). Hence \(A \in \tau_2\). Similarly \(A \in \tau_1\), for all \(i\).

Converse is not true. Consider the example
Let \(X = \{a,b,c,d\}\) and \(\tau = \{\emptyset,\{a,b\}\},\{a,b,c\}, X\}\). Also \(\tau_{Q^*} = \tau\). Let \(B = \{a,b\}\). \(\text{cl } B = X\). Also \(\tau = \tau_{Q^*}\). \(B \in \tau_1\) for all \(i\). But \(B \neq \text{union of all proper open subsets of } X\).

Result 3.3. If \(A\) and \(B\) are open sets with \(A \cap B = \emptyset\), then \(A\) and \(B\) are not \(Q^*\)open.

Proof: Since \(A \cap B = \emptyset\), the points of \(B\) can’t be limit points of \(A\). Then \(\text{cl } A \neq X\). Hence \(A\) is not \(Q^*\)open. Similarly \(B\) is not \(Q^*\)open.

Theorem 3.4. Let \((X, \tau)\) be a topological space. If \(\tau_1 = \tau_{Q^*}\) and \(\tau_2 = (\tau_1)_{Q^*}\) then \(\tau_1 = \tau_2\).

Proof: Clearly \(\tau_1\) is finer than \(\tau_2\). We have to prove that \(\tau_2\) is finer than \(\tau_1\). Let \(A \in \tau_1\). Since \(\tau_1 \subseteq \tau\) and \(A\) is dense with respect to \(\tau\), \(A\) is dense with respect to \(\tau_1\). Then \(A\) is \(Q^*\) open with respect to \(\tau_1\), that is, \(A \in \tau_2\). Therefore \(\tau_2\) is finer than \(\tau_1\). Hence \(\tau_1 = \tau_2\).

Theorem 3.5. Let \((X, \tau)\) be a topological space. (Let \((\tau_A)\) denote the subspace topology on \(A\)). If \(B \subseteq A \subseteq X\), where \(A\) is open with respect to \(\tau\) and \(B\) is \(Q^*\)open in \(X\) then \(B\) is \(Q^*\)open in \(A\).

Proof: Given \(B\) is open in \(X\) and \(\text{cl } B = X\). Then \(B \cap A\) is open in \(A\). Also \(B \cap A = B\) is open in \(A\). Claim \(\text{cl } B\) with respect to \(\tau_A\) is \(A\). Let \(U\) be open in
Properties of Q* sets

A. Since A is open in X, U is open in X. Then U ∈ τ. Since cl B = X, U ∩ B ≠ ∅. Hence every open set U in A intersects B. Therefore B is Q*open in A.

Theorem 3.6. Let (X, τ) be a topological space. If B ⊂ A ⊂ X, where A is Q* open and B is Q*open in A then B is Q*open in X.

Proof: Since B is open in A and A is open in X, B is open in X. We claim cl B with respect to τ is X. Let U be any open set with respect to τ. Since cl A = X, U ∩ A ≠ ∅. Therefore U ∩ A is an open set with respect to τ A. Since cl B with respect to τ A is A, (U ∩ A) ∩ B ≠ ∅. Then U ∩ (A ∩ B) ≠ ∅. Hence cl B with respect to τ = X and hence B is Q*open in X.

Definition 3.7. Let (X, τ) be a topological space. Contra Q* cl A is defined by the intersection of all Q*open sets containing A.

Theorem 3.8. Let (X, τ) be a topological space. Then contra cl A ⊂ contra Q* cl A.

Proof: Let A ⊂ X. We have contra cl A = ∩{B/ B is open, A ⊂ B} and contra Q*cl A = ∩{ B/ B is Q*open, A ⊂ B}. Since every Q* open set is open, contra cl A ⊂ contra Q* cl A.

Example. Let X = \{a,b,c\}. Let τ = \{Φ, \{a,b\}, \{c\},X\}. Also τ Q* = \{X\}. Let A = \{a,b\}. Then contra cl A = \{a,b\}; contra Q*cl A = X. Therefore contra cl A ≠ contra Q*cl A.

Remark. It directly follows from definitions that if every Q* open set is Q*closed then Q*cl A = contra Q* cl A.

Definition 3.9. Let (X, τ) be a topological space. Let A ⊂ X. A is said to be Gd set if A = U ∪ V, where U is open and V is proper Q*open.

Example 3.10. Let X = [1,100]. Let U_a = [1,a] and τ = \{ U_a/ a ∈ X\}. Also τ Q* = τ. Then every set U_a ≠ X is a Gd set.

Remark 3.10. Every Gd set is Q* open but its converse is not true as is evident from the following example.

Let X = \{a,b,c\} and τ = \{Φ, \{a,b\}, X\}. Then τ Q* = \{X, \{a,b\}\}. Here \{b,c\} is Q* open but not Gd set.

Definition 3.11. Let (X, τ) be a topological space. Let D be any directed set. Let <x_a>, α ∈ D be a net in X. We say that <x_a> Q* converges to x_0 if given any Q* open set U containing x_0 there exists α_0 ∈ D such that x_a ∈ U ∀ α ≥ α_0.
Theorem 3.12. Let (X, \mathcal{T}) be a topological space. Let $A \subseteq X$, $x_0 \in Q^* \text{cl } A$ if and only if there exists a net $\langle x_\alpha \rangle$ in A, such that $\langle x_\alpha \rangle$ Q^* converges to x_0.

Proof. Let $\langle x_\alpha \rangle$ be a net in A such that $\langle x_\alpha \rangle$ Q^* converges to x_0. We claim that $x_0 \in Q^* \text{cl } A$. Let U be any Q^* open set containing x_0. Since $\langle x_\alpha \rangle Q^*$ converges to x_0 there exists $\alpha_0 \in D$ such that $x_\alpha \in U$, $\forall \alpha \geq \alpha_0$. Also $\langle x_\alpha \rangle$ is a net in A. Then $x_{\alpha_0} \in U \cap A$. Therefore $U \cap A \neq \emptyset$. Since U is arbitrary, every Q^* open set containing x_0 intersects A. Hence $x_0 \in Q^* \text{cl } A$. Conversely suppose $x_0 \in Q^* \text{cl } A$. We claim that there exists a net in A such that the net Q^* converges to x_0. Let $D = \{U / U$ is Q^* open set containing $x_0\}$. Define \leq in D as follows: $U_1 \leq U_2$ if $U_2 \subseteq U_1$. Clearly (D, \leq) is a directed set. Let U be any Q^* open set containing x_0. Since $x_0 \in Q^* \text{cl } A$, there is a point x_U in $U \cap A$. Therefore $\langle x_U \rangle$ is a net in A. Given a Q^* open set containing x_0, $U \geq G$ implies $U \subseteq G$. Since $x_U \in U \subseteq G$, $x_U \in G$. Therefore $\langle x_U \rangle$ is a net in A such that $\langle x_U \rangle$ Q^* converges to x_0. Hence the Theorem.

Reference